-
Similar Content
-
By KopalniaWiedzy.pl
W Argentynie niektórzy miłośnicy piwa wsypują do kufla fistaszki. Te najpierw toną, później zaś unoszą się na powierzchnię, a następnie znowu toną i znowu się wynurzają. Fizyka fistaszków tańczących w piwie to tytuł artykułu naukowego, w którym akademicy z Niemiec, Francji i Wielkiej Brytanii opisują i wyjaśniają ten fenomen z punktu widzenia fizyki. Dzięki przeprowadzonej przez nich serii eksperymentów możemy poznać tajemnicę interakcji orzeszków z piwem i przy najbliższej okazji pochwalić się znajomym, że wiemy, na czym ona polega.
Orzeszki są cięższe od piwa, więc w nim toną. Jednak na dnie stają się miejscami nukleacji (zarodkowania), gromadzenia się bąbelków dwutlenku węgla obecnych w piwie. A gdy bąbelków zgromadzi się wystarczająco dużo, orzeszek zyskuje pływalność i podąża do góry. Gdy dociera na powierzchnię, przyczepione do niego bąbelki ulatniają się, a proces ten ułatwia obracanie się orzeszka. Fistaszek traci pływalność i znowu tonie. Proces powtarza się dopóty, dopóki napój jest na tyle nasycony gazem, by dochodziło do zarodkowania.
Badający to zjawisko naukowcy zauważyli, że przyczepiające się do orzeszka bąbelki nie są tymi samymi, które samoistnie unoszą się w górę w piwie. Powierzchnia orzeszka powoduje tworzenie się bąbelków, które rosną, gromadzą się i w końcu nadają mu pływalność.
W rozważanym przypadku do nukleacji gazu, czyli pojawienia się bąbelków, może dojść w samym piwie, na szkle naczynia oraz na orzeszku. Zajmujący się tym poważnym problemem międzynarodowy zespół wyliczył, że z energetycznego punktu widzenia najbardziej korzystna jest nukleacja gazu na orzeszku, a najmniej korzystne jest tworzenie się bąbelków w samym piwie. Dlatego też tak łatwo bąbelki gromadzą się wokół fistaszka i go wypychają. Uczeni wyliczyli nawet, że idealny promień bąbelka przyczepionego do orzeszka wynosi mniej niż 1,3 milimetra.
Można się oczywiście zżymać, że naukowcy tracą pieniądze podatników na niepoważne badania. Nic jednak bardziej mylnego. Tańczące w piwie fistaszki pozwalają lepiej zrozumieć działanie zarówno przyrody, jak i niektóre procesy przemysłowe. To, co dzieje się w orzeszkiem w piwie jest bardzo podobne do zjawisk zachodzących w czasie procesu flotacji, wykorzystywanego na przykład podczas oddzielania rud minerałów, recyklingu makulatury czy oczyszczania ścieków.
Badacze zapowiadają, że nie powiedzieli jeszcze ostatniego słowa. Mają bowiem zamiar kontynuować swoje prace, używając przy tym różnych orzeszków i różnych piw.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fizyka zajmuje się zróżnicowanym zakresem badań, od bardzo przyziemnych, po niezwykle abstrakcyjne. Koreańsko-niemiecki zespół badawczy, na którego czele stał Wenjing Lyu postanowił przeprowadzić jak najbardziej przyziemne badania, a wynikiem jego pracy jest artykuł pt. „Eksperymentalne i numeryczne badania piany na piwie”.
Naukowcy zajęli się odpowiedzią na wiele złożonych pytań dotyczących dynamiki tworzenia się piany na piwie, co z kolei może prowadzić do udoskonalenia metod warzenia piwa czy nowej architektury dysz, przez które piwo jest nalewane do szkła. Tworzenie się pianki na piwie to skomplikowana gra pomiędzy składem samego piwa, naczynia z którego jest lane a naczyniem, do którego jest nalewane. Naukowcy, browarnicy i miłośnicy piwa poświęcili tym zagadnieniom wiele uwagi. Autorzy najnowszych badań skupili się zaś na opracowaniu metody, która pozwoli najtrafniej przewidzieć jak pianka się utworzy i jakie będą jej właściwości.
Piana na piwie powstaje w wyniku oddziaływania gazu, głównie dwutlenku węgla, wznoszącego się ku górze. Tworzącymi ją składnikami chemicznymi są białka brzeczki, drożdże i drobinki chmielu. Pianka powstaje w wyniku olbrzymiej liczby interakcji chemicznych i fizycznych. Jest on cechą charakterystyczną piwa. Konsumenci definiują ją ze względu na jej stabilność, jakość, trzymanie się szkła, kolor, strukturę i trwałość. Opracowanie dokładnego modelu formowania się i zanikania pianki jest trudnym zadaniem, gdyż wymaga wykorzystania złożonych modeli numerycznych opisujących nieliniowe zjawiska zachodzące w pianie, czytamy w artykule opisującym badania.
Naukowcy wspominają, że wykorzystali w swojej pracy równania Reynoldsa jako zmodyfikowane równania Naviera-Stokesa (RANS), w których uwzględnili różne fazy oraz przepływy masy i transport ciepła pomiędzy tymi masami. Liu i jego zespół wykazali na łamach pisma Physics of Fluids, że ich model trafnie opisuje wysokość pianki, jej stabilność, stosunek ciekłego piwa do pianki oraz objętość poszczególnych frakcji pianki.
Badania prowadzono we współpracy ze startupem Einstein 1, który opracowuje nowy system nalewania piwa. Magnetyczna końcówka jest w nim wprowadzana na dno naczynia i dopiero wówczas rozpoczyna się nalewanie piwa, a w miarę, jak płynu przybywa, końcówka wycofuje się. Naukowcy zauważyli, że w systemie tym pianka powstaje tylko na początku nalewania piwa, a wyższa temperatura i ciśnienie zapewniają więcej piany. Po fazie wstępnej tworzy się już sam płyn. Tempo opadania piany zależy od wielkości bąbelków. Znika ona mniej więcej po upływie 25-krotnie dłuższego czasu, niż czas potrzebny do jej formowania się.
W następnym etapie badań naukowcy będą chcieli przyjrzeć się wpływowi końcówki do nalewania na proces formowania się piany i jej stabilność.
« powrót do artykułu -
By KopalniaWiedzy.pl
Trzmiel nie powinien latać, ale o tym nie wie, i lata, Lot trzmiela przeczy prawom fizyki. Setki tysięcy trafień w wyszukiwarkach, rozpaleni komentatorzy i teorie spiskowe, posiłkujące się tym mitem pokazują, jak bardzo trwałe potrafią być niektóre fałszywe przekonania. Bo przecież niemal każdy z nas słyszał, że zgodnie z prawami fizyki trzmiel latać nie powinien i każdy z nas widział, że jednak lata. Naukowcy najwyraźniej coś przed nami ukrywają lub coś nie tak jest z fizyką. A może coś nie tak jest z przekonaniem o niemożności lotu trzmiela?
Obecnie trudno dociec, skąd wziął się ten mit. Jednak z pewnością możemy stwierdzić, że swój udział w jego powstaniu miał francuski entomolog Antoine Magnan. We wstępie do swojej książki La Locomotion chez les animaux. I : le Vol des insectes z 1934 roku napisał: zachęcony tym, co robione jest w lotnictwie, zastosowałem prawa dotyczące oporu powietrza do owadów i, wspólnie z panem Sainte-Lague, doszliśmy do wniosku, że lot owadów jest niemożliwością. Wspomniany tutaj André Sainte-Laguë był matematykiem i wykonywał obliczenia dla Magnana. Warto tutaj zauważyć, że Magnan pisze o niemożności lotu wszystkich owadów. W jaki sposób w popularnym micie zrezygnowano z owadów i pozostawiono tylko trzmiele?
Według niektórych źródeł opowieść o trzmielu, który przeczy prawom fizyki krążyła w latach 30. ubiegłego wieku wśród studentów niemieckich uczelni technicznych, w tym w kręgu uczniów Ludwiga Prandtla, fizyka niezwykle zasłużonego w badaniach nad fizyką cieczy i aerodynamiką. Wspomina się też o „winie” Jakoba Ackereta, szwajcarskiego inżyniera lotnictwa, jednego z najwybitniejszych XX-wiecznych ekspertów od awiacji. Jednym ze studentów Ackerta był zresztą słynny Wernher von Braun.
Niezależnie od tego, w jaki sposób mit się rozwijał, przyznać trzeba, że Magnan miałby rację, gdyby trzmiel był samolotem. Jednak trzmiel samolotem nie jest, lata, a jego lot nie przeczy żadnym prawom fizyki. Na usprawiedliwienie wybitnych uczonych można dodać, że niemal 100 lat temu posługiwali się bardzo uproszczonymi modelami skrzydła owadów i jego pracy. Konwencjonalne prawa aerodynamiki, używane do samolotów o nieruchomych skrzydłach, rzeczywiście nie są wystarczające, by wyjaśnić lot owadów. Tym bardziej, że Sainte-Laguë przyjął uproszczony model owadziego skrzydła. Tymczasem ich skrzydła nie są ani płaskie, ani gładkie, ani nie mają kształtu profilu lotniczego. Nasza wiedza o locie owadów znacząco się zwiększyła w ciągu ostatnich 50 lat, a to głównie za sprawą rozwoju superszybkiej fotografii oraz technik obliczeniowych. Szczegóły lotu trzmieli poznaliśmy zaś w ostatnich dekadach, co jednak nie świadczy o tym, że już wcześniej nie wiedziano, że trzmiel lata zgodnie z prawami fizyki.
Z opublikowanej w 2005 roku pracy Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight autorstwa naukowców z Kalifornijskiego Instytut Technologicznego (Caltech) oraz University of Nevada, dowiadujemy się, że większość owadów lata prawdopodobnie dzięki temu, iż na krawędzi natarcia ich skrzydeł tworzą się wiry. Pozostają one „uczepione” do skrzydeł, generując siłę nośną niezbędną do lotu. U tych gatunków, których lot udało się zbadać, amplituda uderzeń skrzydłami była duża, a większość siły nośnej było generowanej w połowie uderzenia.
Natomiast w przypadku pszczół, a trzmiele są pszczołami, wygląda to nieco inaczej. Autorzy badań wykazali, że pszczoła miodna charakteryzuje się dość niewielką amplitudą, ale dużą częstotliwością uderzeń skrzydłami. W ciągu sekundy jest tych uderzeń aż 230. Dodatkowo, pszczoła nie uderza skrzydłami w górę i w dół. Jej skrzydła poruszają się tak, jakby ich końcówki rysowały symbol nieskończoności. Te szybkie obroty skrzydeł generują dodatkową siłę nośną, a to kompensuje pszczołom mniejszą amplitudę ruchu skrzydłami.
Obrany przez pszczoły sposób latania nie wydaje się zbyt efektywny. Muszą one bowiem uderzać skrzydłami z dużą częstotliwością w porównaniu do rozmiarów ich ciała. Jeśli przyjrzymy się ptakom, zauważymy, że generalnie, rzecz biorąc, mniejsze ptaki uderzają skrzydłami częściej, niż większe. Tymczasem pszczoły, ze swoją częstotliwością 230 uderzeń na sekundę muszą namachać się więcej, niż znacznie mniejsza muszka owocówka, uderzająca skrzydłami „zaledwie” 200 razy na sekundę. Jednak amplituda ruchu skrzydeł owocówki jest znacznie większa, niż u pszczoły. Więc musi się ona mniej napracować, by latać.
Pszczoły najwyraźniej „wiedzą” o korzyściach wynikających z dużej amplitudy ruchu skrzydeł. Kiedy bowiem naukowcy zastąpili standardowe powietrze (ok. 20% tlenu, ok. 80% azotu) rzadszą mieszaniną ok. 20% tlenu i ok. 80% helu, w której do latania potrzebna jest większa siła nośna, pszczoły utrzymały częstotliwość ruchu skrzydeł, ale znacznie zwiększyły amplitudę.
Naukowcy z Caltechu i University of Nevada przyznają, że nie wiedzą, jakie jest ekologiczne, fizjologiczne i ekologiczne znaczenie pojawienia się u pszczół ruchu skrzydeł o małej amplitudzie. Przypuszczają, że może mieć to coś wspólnego ze specjalizacją w kierunku lotu z dużym obciążeniem – pamiętajmy, że pszczoły potrafią nosić bardzo dużo pyłku – lub też z fizjologicznymi ograniczeniami w budowie ich mięśni. W świecie naukowym pojawiają się też głosy mówiące o poświęceniu efektywności lotu na rzecz manewrowości i precyzji.
Niezależnie jednak od tego, czego jeszcze nie wiemy, wiemy na pewno, że pszczoły – w tym trzmiele – latają zgodnie z prawami fizyki, a mit o ich rzekomym łamaniu pochodzi sprzed około 100 lat i czas najwyższy odłożyć go do lamusa.
« powrót do artykułu -
By KopalniaWiedzy.pl
Królewska Szwedzka Akademia Nauk ogłosiła, że tegoroczna Nagroda Nobla z fizyki została przyznana za wkład w zrozumienie złożonych systemów fizycznych. Połową nagrody podzielą się Syukuro Manabe i Klaus Hasselmann za fizyczne modelowanie klimatu Ziemi, obliczenie jego zmienności i wiarygodne przewidzenie procesu ocieplania się. Druga połowa trafi do Giorgio Parisiego za odkrycie współzależności nieuporządkowania i fluktuacji w systemach fizycznych, od skali atomowej po planetarną.
Wszyscy trzej laureaci specjalizują się badaniu chaotycznych i pozornie przypadkowych wydarzeń. Manabe i Hasselmann położyli wielkie zasługi dla lepszego zrozumienia klimatu naszej planety i wpływu nań człowieka. Z kolei Parisi zrewolucjonizował naszą wiedzę o materiałach nieuporządkowanych i procesach losowych.
Syukuro Manabe wykazał, w jaki sposób zwiększona koncentracja dwutlenku węgla w atmosferze prowadzi do zwiększenia temperatury na powierzchni Ziemi. Już w latach 60. ubiegłego wieku pracował nad rozwojem fizycznych modeli ziemskiego klimatu. Był pierwszym naukowcem, który badał związek pomiędzy bilansem radiacyjnym Ziemi a pionowym ruchem mas powietrza wywołanym konwekcją.
Żeby poradzić sobie z tak skomplikowanym zadaniem obliczeniowym, stworzył uproszczony model, który opisywał pionową kolumnę powietrza o wysokości 40 kilometrów i za jego pomocą testował różny skład atmosfery. Po setkach godzin obliczeń i symulacji wykazał, że poziom tlenu i azotu mają pomijalny wpływ, a o temperaturze decyduje dwutlenek węgla. Uczony wykazał, że przy dwukrotnym wzroście stężenia CO2, temperatura na powierzchni rośnie o ponad 2 stopnie Celsjusza. Jego model potwierdził, że wzrost temperatury na powierzchni Ziemi rzeczywiście jest zależny od koncentracji CO2, gdyż przewidywał wzrost temperatury przy powierzchni i jednoczesne ochładzanie się wyższych partii atmosfery. Gdyby za wzrost temperatury odpowiadały zmiany w promieniowaniu słonecznym, to cała atmosfera powinna się ogrzewać w tym samym czasie.
Swój uproszczony, dwuwymiarowy model, zapoczątkowany w latach 60., rozbudował, gdy wzrosły możliwości obliczeniowe komputerów i mógł do niego dodawać kolejne elementy. W roku 1975 Manabe przedstawił trójwymiarowy model klimatyczny. Był on kolejnym krokiem milowym ku lepszemu zrozumieniu klimatu. Prace Manabe stanowią fundament dla współczesnych modeli.
Około 10 lat po przełomowych pracach Manabe Klaus Hasselmann stworzył model fizyczny, w którym połączył pogodę i klimat. Odpowiedział w ten sposób na niezwykle ważne pytanie, dlaczego modele klimatyczne mogą być wiarygodne, pomimo tego, że sama pogoda jest zmienna i chaotyczna. Hasselmann stworzył też metody pozwalające na zidentyfikowanie sygnałów, świadczących o wpływie na klimat zarówno procesów naturalnych, jak i działalności człowieka. To dzięki nim jesteśmy w stanie udowodnić, że zwiększone temperatury na powierzchni Ziemi są spowodowane antropogeniczną emisją dwutlenku węgla.
W latach 50. Hasselmann był doktorantem fizyki w Hamburgu, gdzie zajmował się dynamiką płynów i rozwijał modele opisujące fale i prądy oceaniczne. Przeprowadził się do Kalifornii i nadal zajmował się oceanografią. Poznał tam m.in. słynnego Charlesa Keelinga, autora najdłuższej serii pomiarów stężenia CO2 w atmosferze. Jednak wówczas nie przypuszczał jeszcze, że w swoich badaniach będzie regularnie wykorzystywał krzywą Keelinga.
Hasselmann wiedział, że stworzenie modelu klimatycznego z chaotycznych danych pogodowych będzie niezwykle trudne. A zadania nie ułatwia fakt, że zjawiska wpływające na klimat są niezwykle zmienne w czasie. Mogą być to zjawiska gwałtowne i szybko się zmieniające, jak siła wiatru i temperatura powietrza, ale również bardzo powolne, jak topnienie lodowców czy ogrzewanie się oceanów. Wystarczy wziąć pod uwagę fakt, że równomierne zwiększenie temperatury o 1 stopień Celsjusza może trwać w przypadku atmosfery kilka tygodni, ale w przypadku oceanów mogą minąć setki lat. Prawdziwym wyzwaniem było uwzględnienie tych szybkich chaotycznych zmian pogodowych w obliczeniach dotyczących klimatu i wykazaniu, w jaki sposób wpływają one na klimat. Hasselmann stworzył stochastyczny model klimatyczny, do którego zainspirowały go prace Einsteina nad ruchami Browna.
A gdy już ukończył model zmienności klimatu i wpływu nań pogody, stworzył modele opisujące wpływ człowieka na cały system. Pozwalają one odróżnić np. wpływ zmian promieniowania słonecznego od wpływu gazów emitowanych przez wulkany, a te od wpływu gazów emitowanych przez człowieka.
Około 1980 roku Giorgio Parisi, ostatni z tegorocznych laureatów, znalazł ukryte wzorce w nieuporządkowanych złożonych materiałach. To jedno z najważniejszych osiągnięć teorii złożonych systemów. Dzięki niemu jesteśmy w stanie lepiej rozumieć i badać wiele pozornie losowych zjawisk i nieuporządkowanych materiałów. Odkrycie to ma znaczenie nie tylko fizyce. Ma olbrzymie znaczenie dla matematyki, biologii, neurologii czy maszynowego uczenia się.
Parisi rozpoczął swoje przełomowe prace od badań szkła spinowego. To materiał magnetyczny, który wykazuje lokalne uporządkowanie spinów, czyli momentów magnetycznych, ale nie posiadający wypadkowego momentu magnetycznego. Szkło spinowe to stop metalu, w którym mamy np. atomy żelaza są losowo rozmieszczone wśród atomów miedzi. Jednak mimo że w stopie znajduje się niewiele atomów żelaza, to radykalnie zmieniają one właściwości magnetyczne całego materiału. Zachowują się jak małe magnesy, na które wpływają sąsiadujące atomy. W standardowym magnesie wszystkie spiny mają ten sam kierunek.
Jenak w szkle spinowym niektóre pary usiłują wskazywać w jednym kierunku, a inne w innym. Parisi chciał dowiedzieć się, jak wybierają one optymalną orientację. Problemem tym zajmowało się wielu wybitnych uczonych, w tym laureaci Nagrody Nobla. Jednym ze sposobów na znalezienie odpowiedzi było wykorzystanie tzw. replica trick, matematycznej metody, w której wiele kopii tego samego systemu było przetwarzanych jednocześnie. Jednak w fizyce się to nie sprawdzało.
W 1979 roku Parisi dokonał przełomowego odkrycia na tym polu. Wykazał, że w kopiach istnieją ukryte struktury i opisał je matematycznie. Minęło wiele lat, zanim udowodniono, że rozwiązanie Parisiego jest prawidłowe. Od tamtej jednak pory jego metoda jest używana do badania systemów nieuporządkowanych.
Syukuro Manabe urodził się w Japonii w 1931 roku. Jest pionierem w wykorzystaniu komputerów do symulowania klimatu. Pracę doktorską obronił na Uniwersytecie Tokijskim w 1958 roku, następnie wyjechał do USA, gdzie pracował w US Weather Bureau, NOAA (Narodowa Administracja Oceaniczna i Atmosferyczna) i Princeton University. Jest obecnie starszym meteorologiem na Princeton University. Jest również członkiem Akademii Nauk USA, zagranicznym członkiem Akademii Japońskiej, Academia Europaea i Royal Society of Canada, laureatem licznych nagród naukowych.
Klaus Hasselmann, urodzony w Hamburgu w 1931 roku, to czołowy niemiecki oceanograf i specjalista od modelowania klimatu. Jest twórcą modelu zmienności klimatycznej nazwanego modelem Hasselmanna. Życie zawodowe związał głównie z Uniwersytetem w Hamburgu, pracował też na Uniwersytecie w Getyndzie i w Instytucie Dynamiki Cieczy im. Maxa Plancka. Był dyrektorem-założycielem Instytutu Meteorologii im. Maxa Plancka oraz dyrektorem naukowym w Niemieckim Centrum Obliczeń Klimatycznych. Obecnie zaś jest wiceprzewodniczącym Europejskiego forum Klimatycznego, które założył w 2001 roku wraz z prof. Carlo Jaegerem. Za swoją pracę naukową otrzymał m.in. nagrodę od Europejskiego Towarzystwa Geofizycznego i amerykańskich oraz brytyjskich towarzystw Meteorologicznych.
Giorgio Parisi urodził się w 1948 roku. Jest fizykiem teoretycznym, a jego zainteresowania koncentrują się na mechanice statystycznej, kwantowej teorii pola i systemach złożonych. Pracował w Laboratori Nazionali di Frascati, na Columbia University, Institut des Hautes Études Scientifiques oraz École normale supérieure i Uniwersytecie Rzymskim Tor Vergata. Jest też prezydentem jednej z najstarszych i najbardziej prestiżowych europejskich instytucji naukowych Accademia dei Lincei oraz członkiem Francuskiej Akademii Nauk, amerykańskiej Akademii Nauk czy Amerykańskiego Towarzystwa Filozoficznego. Parisi to laureat wielu nagród w tym Nagrody Enrico Fermiego czy Medalu Maxa Plancka.
« powrót do artykułu -
Fermilab buduje ostatni z wielkich detektorów, które mają znaleźć neutrino sterylne i fizykę poza MSBy KopalniaWiedzy.pl
W Fermi National Accelerator Laboratory (Fermi Lab), jednej z najbardziej zasłużonych instytucji dla rozwoju fizyki cząstek, trwa właśnie budowa ostatniego z wielkich detektorów, który ma badać neutrino i szukać dowodów na istnienie fizyki poza Modelem Standardowym. Zespół detektorów powstaje w ramach Short-Baselina Neutrino Program.
Projekt składa się ze źródła neutrin i trzech detektorów ustawionych w linii prostej. Short-Baseline Near Detector (SBND), którego budowa właśnie się rozpoczęła, znajdzie się 110 metrów za obszarem, w którym strumień protonów będzie uderzał w cel, generując strumień neutrin mionowych. W odległości 360 metrów za SBND znajduje się MicroBooNE. Urządzenie to rozpoczęło pracę już w 2015 roku. Za MicroBooNE, w odległości 130 metrów, stoi zaś ICARUS, który rozpocznie pracę jeszcze tej jesieni.
Podróżujące przez przestrzeń neutrino podlega oscylacjom, zmienia się pomiędzy trzema różnymi rodzajami: neutrinem mionowym, taonowym i elektronowym. I właśnie te oscylacje mają badać SBND, MicroBooNE i ICARUS. Jeśli okazałoby się, że istnieje czwarty rodzaj neutrin lub też badane neutrina zachowywałyby się w inny sposób, niż obecnie się przewiduje, detektory powinny to wykryć i być może fizyka wyjdzie poza Model Standardowy.
Czujniki detektora SBND będą zawieszone w zbiorniku z płynnym argonem. Gdy neutrino trafi do zbiornika i zderzy się z atomem argonu, powstaną liczne cząstki oraz światło. Zostaną one zarejestrowane przez czujniki, a analizy sygnałów pozwolą fizykom na precyzyjne odtworzenie trajektorii wszystkich cząstek powstałych w wyniku kolizji. Zobaczymy obraz, który pokaże nam olbrzymią liczbę szczegółów w bardzo małej kali. W porównaniu z wcześniejszymi eksperymentami otworzy nam się naprawdę nowe spektrum możliwości, mówi Anne Schukraft, koordynatorka techniczna projektu.
Wewnątrz SBND znajdą się trzy wielkie elektrody. Dwie anody i katoda. Każda z nich będzie mierzyła 5x4 metry. Natężenie pola elektrycznego pomiędzy katodą a każdą z anod wyniesie 500 V/cm. Anody zostaną umieszczone na przeciwnych ścianach pomieszczenia w kształcie sześcianu. Będą one przechwytywały elektrony, a znajdujące się za nimi czujniki będą rejestrowały fotony. W środku detektora umieszczona zostanie folia spełniająca rolę katody. Zamontowano ją pod koniec lipca, a w najbliższych dniach ma zostać ukończony montaż pierwszej anody.
Całość, gdy zostanie ukończona, będzie ważył ponad 100 ton i zostanie wypełniona argonem o temperaturze -190 stopni Celsjusza. Komora będzie znajdowała się w stalowym kriostacie o izolowanych ścianach, którego zadaniem będzie utrzymanie niskiej temperatury wewnątrz. Skomplikowany system rur będzie ciągle filtrował argon, by utrzymać go w czystości.
SBND to przedsięwzięcie międzynarodowe. Poszczególne elementy systemy powstają w wielu krajach, przede wszystkim w USA, Wielkiej Brytanii, Brazylii i Szwajcarii. Schukraft przewiduje, że nowy detektor ruszy na początku 2023 roku.
Gdy prace nad SBND się zakończą, detektor będzie pracował razem z MicroBooNE i ICARUSEM. Naukowcy chcą przede wszystkim poszukać dowodów na istnienie neutrina sterylnego, cząstki, która nie wchodzi w interakcje z oddziaływaniami słabymi. Już wcześniej, podczas eksperymentów prowadzonych w Liquid Scintillator Neutrino Detector w Los Alamos National Lab i MiniBooNE w Fermilab odkryto sygnały, które mogą wskazywać na istnienie takiej cząstki.
Pomysł polega na tym, by umieścić detektor naprawdę blisko źródła neutrin, w nadziei, że uda się złapać ten typ neutrina. Następnie jest kolejny detektor, a dalej jeszcze jeden. Mamy nadzieję, że zobaczymy oscylacje sterylnego neutrina, wyjaśnia Rober Acciarri, współdyrektor prac nad budową detektorów.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.