Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Natura pomoże stworzyć optyczny komputer

Rekomendowane odpowiedzi

Dzięki pracom Michaela Bartla i jego zespołu z University of Utah oraz dzięki pewnemu... chrząszczowi, możliwa stanie się produkcja idealnych kryształów fotonicznych, która pozwolą na manipulowanie światłem i zbudowanie bardzo wydajnego fotonicznego komputera.

Naukowcy odkryli, że pancerz jednego z gatunków brazylijskich chrząszczy składa się z idealnych fotonicznych kryształów.

Jak zauważył Bartl, natura opracowała proste metody produkcji struktur, których nie jesteśmy w stanie uzyskać za pomocą wartych miliony dolarów urządzeń.

Wspomniany owad to Lamprocyphus augustus, a jego pancerz po raz pierwszy w historii pozwolił naukowcom na pracę ze strukturą, która jest idealnym fotonicznym kryształem. Dzięki swojej specyficznej budowie pancerz chrząszcza mieni się w słońcu wieloma odcieniami zieleni.

Niestety, natura nie była dla naukowców na tyle łaskawa, by dać im do ręki gotowe rozwiązanie. Chityna, z której zbudowany jest pancerz, nie nadaje się do produkcji kryształów. Jest niestabilna, nie jest półprzewodnikiem i nie zagina odpowiednio światła. Dlatego też Bartl i jego zespół próbują naśladować pancerz i stworzyć kryształy w warunkach laboratoryjnych.

Fotoniczne kryształy posłużą nie tylko do budowy optycznych komputerów. Przydadzą się również do stworzenia bardziej wydajnych ogniw słonecznych, posłużą jako katalizatory reakcji chemicznych, wejdą w skład miniaturowych laserów.

Jak wyjaśnia Bartl, fotoniczne kryształy to nowy typ materiału optycznego, który pozwoli na manipulowanie światłem w sposób odmienny od klasycznego. Dzięki takim kryształom będzie można np. zdecydować, które długości fali i z jaką prędkością przejdą przez kryształ, a które się od niego odbiją.

Problem w tym, że nikomu nie udało się dotychczas stworzyć idealnych kryształów fotonicznych. Oczywiście każdy słyszał o tym, że diamenty są idealnymi kryształami. Nie można ich jednak użyć do manipulowania światłem, gdyż poszczególne atomy w diamencie są upakowane zbyt gęsto.

Jako pierwsza żukiem Lamprocyphus augustus zainteresowała się Lauren Richey, była studentka Springville High School, obecnie studiująca na Brigham Young University. Badała ona zjawisko opalizowania w naturze. Szukała opalizującego chrząszcza, więc jej uczelnia zamówiła dostarczenie Lamprocyphus augustus.

Opalizująca zieleń zwierzęcia jest wywołana strukturą pancerza, a nie żadnym barwnikiem. Bliższe badania wykazały, że każdy z kryształów tworzących pancerz owada ma wymiary 200x100 mikrometrów. Światło zielone, o długości fali 500-550 nanometrów, nie jest w stanie przez nie przeniknąć i się odbija.
Naukowcy zauważyli, że chrząszcz opalizuje pod każdym kątem, pod jakim się nań spogląda. Tymczasem w większości podobnych materiałów zjawisko opalizacji widać tylko pod niektórymi kątami. Badania mikroskopem elektronowym wykazały ponadto, że kryształy jego pancerza nie są podobne do typowych sztucznych kryształów fotonicznych.

Dalsze badania prowadzono za pomocą mikroskopu skaningowego. Po stworzeniu 150 przekrojów przez strukturę chitynowych kryształów i ich złożeniu w komputerze okazało się, że pancerz tworzą idealne, czyli podobne do diamentów, struktury krystaliczne. Zbudowane są jednak nie z węgla, a z powietrza i chityny. Mając te dane, naukowcy postanowili sprawdzić na nich posiadaną wiedzę teoretyczną, by przekonać się, jaki kolor, według teorii, powinien mieć kryształ o takiej budowie. Odpowiedź brzmiała: zielony opalizujący.

Uczeni nie wiedzą też, po co owadowi taki kolor. Widoczna zieleń jest nienaturalna, więc nie chodzi o kamuflaż. Prawdopodobnie chrząszcz swoim pancerzem chce zwrócić uwagę płci przeciwnej.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Niestety, natura nie była dla naukowców na tyle łaskawa, by dać im do ręki gotowe rozwiązanie

 

Bo nie urosły im czułki i pancerz?? 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 

Uczeni nie wiedzą też, po co owadowi taki kolor. Widoczna zieleń jest nienaturalna, więc nie chodzi o kamuflaż. Prawdopodobnie chrząszcz swoim pancerzem chce zwrócić uwagę płci przeciwnej.

 

http://kopalniawiedzy.pl/wiadomosc_7263.html

 

Ech, wiadomo ,że chrząszczowi nie chodzi o pieniądze, więc jeśli nie wiadomo, o co mu chodzi, to zaraz musi iść o seks...

Jego zieleń jest nienaturalna dla ludzkich oczu, ale dla oczu naturalnych wrogów chrząszcza może być akurat jak najzwyklejsza.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Drobny chrząszcz sprzed milionów lat jest pierwszym gatunkiem owada, który został zidentyfikowany w skamieniałych odchodach – tzw. koprolicie. Pochodzą one przypuszczalnie od przodka dinozaurów, zamieszkującego obszar dzisiejszego Śląska – informują naukowcy w Current Biology.
      Niewielkie, pokawałkowane chrząszcze zaliczono do gatunku nazwanego Triamyxa coprolithica. Jest to pierwszy gatunek owada zidentyfikowany w koprolicie, czyli skamieniałych odchodach.
      Same zaś koprolity to najprawdopodobniej pozostałość po przodku dinozaurów – żyjącym 230 mln lat temu gadzie z gatunku Silesaurus opolensis. Autorzy nowej publikacji – choć nie są tego w stu procentach pewni - typują jednak właśnie przedstawiciela tej grupy ze względu na kształt, wielkość i inne cechy koprolitów.
      Silezaury żyły w późnym triasie na terenie; ich znane skamieniałości pochodzą z Krasiejowa (woj. opolskie). Były stosunkowo niewielkie, szacuje się, że ważyły ok. 15 kg i mierzyły ok. 2 metrów. Ich szczęki zakończone były dziobem, który mógł służyć do przeczesywania ściółki i wybierania owadów z ziemi, jak robią niektóre ptaki.
      Badania prowadził międzynarodowy zespół z ośrodków naukowych w Szwecji, na Tajwanie, w Niemczech i w Meksyku.
      Nigdy nie sądziłem, że dowiemy się, co ten triasowy poprzednik dinozaurów jadł na obiad - mówi jeden z autorów artykułu, Grzegorz Niedźwiedzki z Uniwersytetu w Uppsali (Szwecja).
      Naukowcy prześwietlili koprolit w synchrotronie, dzięki czemu dokonali trójwymiarowej, komputerowej rekonstrukcji jego zawartości, nie niszcząc całości znaleziska.
      Wewnątrz znaleźli liczne fragmenty chrząszczy, z których większość należała do jednego gatunku. Niektóre przetrwały niemal w całości, z dobrze zachowanymi, delikatnymi czułkami i odnóżami. Należały one do podrzędu myxophaga, który istnieje do dzisiaj. Obecnie chrząszcze z tej grupy zamieszkują podmokłe stanowiska i żerują na glonach.
      Sposób zachowania chrząszczy w koprolicie przypomina nieco sposób zachowania w bursztynach, które zwykle stanowią źródło najlepiej zakonserwowanych skamieniałości owadów. Bursztyny tworzyły się jednak dopiero w stosunkowo niedawnej przeszłości geologicznej i najstarsze, zachowane w nich owady mają ok. 140 mln lat - przypominają autorzy nowej publikacji. Ich zdaniem nowe badanie pozwala uznać koprolity za cenne źródło okazów, jak też wiedzy nt. ewolucji dużo starszych grup owadów, a zarazem – informacji nt. diety wymarłych kręgowców

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Skamieniały okaz chrząszcza, znaleziony na południu Syberii w mioceńskich osadach rzeki Irtysz sprzed 16-23 mln lat, reprezentuje żyjący jeszcze dziś gatunek - Helophorus sibiricus. Należy on do rodziny kałużnicowatych (Hydrophilidae), występującej zarówno w Eurazji, jak i w Ameryce Północnej.
      W 1860 r. jako pierwszy opisał ten gatunek chrząszcza rosyjski entomolog Wiktor Iwanowicz Moczulski, który pracował z okazami zebranymi nad Bajkałem. H. sibiricus prowadzi wodny tryb życia, zamieszkuje głównie istniejące okresowo, obfitujące w zalaną roślinność zbiorniki.
      Na podstawie zapisu kopalnego kiedyś uznawano, że średni okres występowania gatunku owada to ok. 2-3 mln lat. Biolodzy coraz częściej natrafiają jednak na dowody, że to nieprawda. Datowanie metodą zegara molekularnego, która zakłada, że tempo narastania różnic jest w miarę stałe, sugeruje, że niektóre gatunki owadów powstały co prawda w plejstocenie (tak twierdzą Cardoso i Vogler w artykule opublikowanym w 2005 r. w piśmie Molecular Ecology), ale niektóre mogły przetrwać nawet 10-20 mln i żyją nadal także dziś. Na razie nie wiadomo, jak poradziły sobie z wydarzeniami, które wyeliminowały inne zwierzęta. Niewykluczone, że było to możliwe dzięki zamiłowaniu do stabilnych środowisk.
      Niestety, dotąd znaleziono niewiele skamieniałości, które potwierdzałyby założenie o długowieczności gatunków owadów. Często cechy wskazujące na przynależność taksonomiczną i pozwalające dokonywać porównań ze współczesnymi owadami (przede wszystkim budowa męskich genitaliów) zostały zatarte przez czas i warunki "przechowywania".
      W znalezionym przez zespół Martina Fikáčka z Muzeum Narodowego w Pradze okazie nie zachowały się co prawda genitalia, widać za to doskonale typowe dla gatunku ziarnistości na przedpleczu, czyli widocznej z góry przedniej części tułowia.
    • przez KopalniaWiedzy.pl
      Oskórek chrząszczy mieni się prawdziwą feerią barw. Co się jednak dzieje, gdy te piękne owady umierają i ulegają fosylizacji? Ile pierwotnego koloru (i czy w ogóle) zachowuje się w skamielinie? Teraz już można odpowiedzieć na te pytania, bo dzięki mikroskopom elektronowym udało się z dużym prawdopodobieństwem odtworzyć wygląd chrząszczy żyjących od 15 do 47 mln lat temu.
      Kolory, jakie widzimy u chrząszczy, są skutkiem oddziaływania promieni świetlnych z oskórkiem. Drobne twory z chityny m.in. zaginają i odbijają światło, by wzmocnić fale o konkretnej długości. Z tego powodu mówi się o kolorach strukturalnych, które do zaistnienia nie wymagają obecności pigmentu.
      Amerykanie analizowali oskórki szeregu okazów, by ustalić, jak fosylizacja, w czasie której pewne atomy i cząsteczki mogą zostać usunięte lub zastąpione, wpłynęła na właściwości optyczne kutykuli.
      Okazało się, że choć sama struktura się zachowała, jej budowa chemiczna rzeczywiście się zmieniła. Doszło do przesunięcia ubarwienia ku czerwieni, czyli ku falom o większej długości. Z tego powodu owad fioletowy za życia stawał się po śmierci i upływie wielu lat niebieski, a niebieski ulegał zzielenieniu. Jak wyjaśnia McNamara, zmieniał się współczynnik załamania oskórka [czyli skład chemiczny materiału].
      Członkowie zespołu podkreślają, że stopień przesunięcia ku czerwieni jest różny u poszczególnych okazów i że wszystkie badane egzemplarze pochodzą z podobnych osadów. Nie wiadomo więc, co by się stało, gdyby prehistoryczne chrząszcze zmarły i leżały gdzie indziej. By stwierdzić, czy ewentualny kolor (lub brak koloru) jest prawdziwy, entomolodzy analizowali owady z 5 kenozoicznych biotopów.
    • przez KopalniaWiedzy.pl
      Próżnia jest powszechnie uznawana za najdoskonalszy izolator. brak atomów powoduje, że ciepło jest bardzo słabo przewodzone. Jednak najnowsze badania pozwoliły naukowcom wpaść na trop materiału, który jeszcze słabiej przewodzi ciepło. Chodzi tutaj o warstwy fotonicznych kryształów przedzielonych próżnią.
      Ciepło może być transferowane pomiędzy materiałai poprzez konwekcję, przewodnictwo i radiację. Dwie pierwsze metody wymagają istnienia materialnego medium, zatem nie działają w próżni. jednak radiacja w postaci światła podczerwonego przemieszcza się w próżni, powodując np. powolne stygnięcie płynu w termosie.
      Naukowcy z Uniwersytetu Stanforda pracujący pod kierunkiem Shanhuia Fana już w ubiegłym roku zaczęli zastanawiać się, czy istnieje lepszy izolator od próżni. Z ich teoretycznych wyliczeń wynikało, że mogą to być kryształy fotoniczne. Powstają one w naturze (np. opal), można je również wytworzyć w laboratorium. Ich szczególną cechą jest struktura o okresowo rozłożonym współczynniku załamania. Mamy w niej do czynienia z fotoniczną przerwą energetyczną, a więc nie przechodzi przezeń konkretna długość fali świetlnej.
      Uczeni odkryli, że struktura o grubości 100 mikrometrów, zbudowana z 10 warstw kryształów o grubości 1 mikrometra każda, pomiędzy którymi znajdują się 10-mikrometrowe obszary próżni, powoduje, że przewodnictwo cieplne jest o 50% mniejsze niż w przypadku zastosowania samej próżni. Dalsze badania dowiodły, że nie zależy ono od grubości warstw kryształów, ale od współczynnika załamania światła.
      Odkrycie to może mieć liczne zastosowania. Na przykład tam, gdzie energia słońca jest wykorzystywana do podgrzewania, przyda się materiał, który będzie przepuszczał światło widzialne, ale zatrzyma ciepło.
    • przez KopalniaWiedzy.pl
      Może się to wydawać dziwne, ale pomimo że są gryzione przez samce podczas tego procesu, samice chrząszczy naprawdę lubią seks. Duże wymagania seksualne tych stawonogów już budzą zdziwienie naukowców, nie mówiąc o fakcie wskazującym, że kopulują raczej nie w celu bycia zapłodnioną, a ... zapobiegania odwodnieniu.
      Jesteśmy bardzo zdziwieni zachowaniem samic. Samce znane są z zadawania im bólu, a one jeszcze wracają po więcej - mówi Claudia Ursprung z Uniwersytetu Toronto Mississauga. Aby dowiedzieć się, czy samice pobierają od samców wodę lub pokarm, przez osiem dni trzymano w zamknięciu 79 przedstawicielek rzędu chrząszczy. Niektóre z nich były karmione i pojone, inne dostawały jedynie pokarm, a ostatnia grupa wyłącznie wodę.
      Wyniki były zaskakujące. Okazało się, że w przypadku niedoboru wody samice były dużo bardziej skore do kopulacji niż gdy było jej pod dostatkiem. Apetyt na seks kończył się z momentem zaspokojenia pragnienia. Chrząszcze wykształciły tę dziwaczną zdolność prawdopodobnie dlatego, że niektóre gatunki żyją w bardzo suchym środowisku - zgadzają się entomolodzy. Jest to swego rodzaju łapówka, która ma nakłonić do godów - tłumaczy współautor badań Darryl Gwynne - zabezpieczenie zapewniające, że samica wyda na świat potomstwo - kończy.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...