Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Niewielka pokryta lawą planeta co 30,5 godziny traci tyle materiału, że wystarczyłoby go na wzniesienie Mount Everest. Astronomowie z Massachusetts Institute of Technology odkryli planetę, która szybko rozpada się na ich oczach. Położona jest w odległości około 140 lat świetlnych od Ziemi. Jest wielkości Merkurego, jednak znajduje się 20-krotnie bliżej swojej gwiazdy, niż Merkury, i obiega ją w ciągu 30,5 godziny. Przy tak niewielkiej odległości planeta prawdopodobnie pokryta jest gotującą się magmą, która ciągle odparowuje w przestrzeń kosmiczną.
Naukowcy zauważyli niezwykłą planetę za pomocą Transiting Exoplanet Survey Satellite (TESS). To teleskop kosmiczny, którego celem jest poszukiwanie pobliskich planet na podstawie ich przejścia na tle gwiazdy macierzystej. W danych z TESS uwagę uczonych zwrócił nietypowy tranzyt, którego siła sygnału zmieniała się wraz z kolejnymi przejściami planety na tle gwiazdy. Szczegółowe badania potwierdziły, że sygnał pochodzi z bliskiej gwieździe planety, która ciągnie za sobą ogon materiału na podobieństwo komety. Długość tego ogona jest gigantyczna. Rozciąga się on na 9 milionów kilometrów, niemal połowę długości orbity planety, mówi Marc Hon z Kavli Institute of Astrophysics and Space Research.
Planeta bardzo szybko traci materiał. Biorąc pod uwagę jej rozmiary i masę, astronomowie obliczają, że całkowicie rozpadnie się w ciągu 1–2 milionów lat. Mieliśmy szczęście, że ją w tym momencie zauważyliśmy. To jej ostatni oddech, dodaje Avi Shporer z TESS Science Office.
Planeta BD+05 4868 Ab została odkryta przypadkiem. Uczeni nie poszukiwali takiego szczególnego obiektu. Prowadzili typowe badania i zwrócili uwagę na niezwykły sygnał. Typowe sygnały z tranzytów to krótkie, regularne spadki jasności gwiazdy, które wskazują, że jakiś obiekt co jakiś czas przechodzi przed gwiazdą, blokując część jej światła. W przypadku BD+05 4868 Ab naukowcy spostrzegli, że o ile do spadków jasności dochodzi co 30,5 godziny, to jasność gwiazdy wraca do normy przez dłuższy czas. To wskazywało na rozciągniętą strukturę podążającą za obiektem, przesłaniającym gwiazdę. A jeszcze bardziej intrygujący był fakt, że za każdym razem kształt wykresu spadku jasności był inny, więc naukowcy stwierdzili, że ta rozciągnięta strukturą za każdym razem musi mieć inny kształt.
Taki tranzyt jest typowy dla komety z długim warkoczem. Jednak było mało prawdopodobne, by taki warkocz – który w przypadku komety składa się z gazu i lodu – przetrwał tak długo w tak niewielkiej odległości od gwiazdy. Co innego, gdyby były to ziarna minerałów odparowane z planety, wyjaśnia Marc Hon.
Naukowcy obliczają, że temperatura na powierzchni planety wynosi około 1600 stopni Celsjusza. Znajdujące się tam minerały gotują się i odparowują, tworząc długi pyłowy ogon ciągnący się za planetą. Do takiego stanu rzeczy przyczynia się niewielka, mniejsza od Merkurego, masa planety. Jest ona na tyle mała, że planeta nie jest w stanie utrzymać atmosfery, która w jakimś stopniu by ją chroniła. To bardzo mały obiekt o bardzo słabej grawitacji. Łatwo więc traci masę, co dodatkowo osłabia jego grawitację, więc traci masę jeszcze łatwiej.
BD+05 4868 Ab to zaledwie czwarta znana nam rozpadająca się planeta. Trzy poprzednie zostały odkryte ponad 10 lat temu przez Teleskop Kosmiczny Keplera. BD+05 4868 Ab ma z nich najdłuższy ogon i generuje najsilniejszy sygnał tranzytu. To zaś wskazuje, że proces rozpadu ma tam znacznie bardziej dramatyczny przebieg niż na trzech pozostałych planetach.
Dzięki temu, że nowo odkryta planeta znajduje się bardzo blisko gwiazdy macierzystej, jest idealnym celem dla Teleskopu Webba, za pomocą którego można będzie zbadać skład jej warkocza, a zatem dowiedzieć się, jaki minerały znajdują się na planecie.
Hon już tego lata rozpocznie obserwacje BD+05 4868 Ab za pomocą Webba. To unikatowa okazja, by bezpośrednio zbadać skład skalistej planety pozasłonecznej. To wiele nam powie o różnorodności takich planet i potencjalnych szansach na istnienia na nich życia, cieszy się uczony.
« powrót do artykułu -
By KopalniaWiedzy.pl
Długość, szerokość i głębokość dwóch kanionów znajdujących się po niewidocznej z Ziemi stronie Księżyca są podobne do rozmiarów Wielkiego Kanionu Kolorado, informują naukowcy z Lunar and Planetary Institute (LPI). O ile jednak Wielki Kanion powstawał przez miliony lat, kaniony na Księżycu pojawiły się w czasie krótszym niż... 10 minut.
Niemal cztery miliardy lat temu asteroida lub kometa przeleciała nad biegunem południowym Księżyca, otarła się o szczyty Malapert i Mouton i uderzyła w powierzchnię. Zderzenie wyrzuciło strumienie skał, które wyrzeźbiły kaniony o rozmiarach ziemskiego Wielkiego Kanionu, mówi główny autor badań, David Kring z Universities Space Research Association do którego należy LPI.
Obiekt, który utworzył oba kaniony, w chwili uderzenia pędził z prędkością 55 000 kilometrów na godzinę. W wyniku upadku powstał 320-kilometrowy krater uderzeniowy Schrödinger. Przyciągnął on uwagę grupy naukowców, stając się okazją do zbadania wczesnych etapów rozwoju Układu Słonecznego.
Dzięki danym dostarczonym przez Lunar Reconnaissance Orbiter naukowcy poznali rozmiary kanionów. Vallis Schrödinger ma ok. 270 km długości, ok. 20 km szerokości i 2,7 km głębokości, a Vallis Planck – 280 km długości, 27 szerokości i 3,5 km głębokości, a na długości 860 km rozciągają się kratery uderzeniowe powstałe w wyniku upadku materiału, który go wyrzeźbił.
Badania pokazały, że kratery powstały w wyniku uderzeń szczątków z upadku asteroidy lub komety. Wyrzucone w wyniku pierwotnego uderzenia skały leciały z prędkością 3600 km/h wywołując kolejne uderzenia, która wyrzeźbiły kaniony. Energia potrzebna do ich powstania była 130-krotnie większa niż energia całej broni atomowej będącej w posiadaniu ludzkości.
« powrót do artykułu -
By KopalniaWiedzy.pl
Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.
« powrót do artykułu -
By KopalniaWiedzy.pl
Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wykonane przez Telekop Webba (JWST) zdjęcia znanej gromady galaktyk El Gordo (Grubas) ujawniły niezwykły obiekt, którego nigdy wcześniej nie widziano. Na wykonanych w podczerwieni fotografiach widać odległe zniekształcone galaktyki znajdujące się w tle. Teleskop Hubble'a, który niejednokrotnie fotografował El Gordo, nie wdział tych galaktyk. Grubas to gromada setek galaktyk, która powstała 6,2 miliarda lat temu. W swoim czasie była to najbardziej masywna struktura tego typu we wszechświecie.
Pracujący z JWST naukowcy skupili się na El Gordo, wykorzystując gromadę w roli soczewki. Zjawisko soczewkowania grawitacyjnego jest często używane przez astronomów do obserwacji odległych obiektów. Wykorzystuje ono fakt, że światło przebiegające w pobliżu dużej masy – tutaj jest to gromada galaktyk – ulega zakrzywieniu. Masa taka działa jak soczewka, pokazując i powiększając to, co jest za nią.
Na najnowszych obrazach El Gordo widać jasny łuk nazwany El Anzuelo (Haczyk na ryby). Tworzy go światło z galaktyki odległej od nas o 10,6 miliarda lat. Czerwony kolor El Anzuelo to skutek zarówno przechodzenia światła przez pył, jak i przesunięcia ku czerwieni, wynikającego z olbrzymiej odległości, jaką musiało ono pokonać, by do nas dotrzeć.
Astronomowie wykonali korektę zniekształceń powodowanych przez El Gordo i stwierdzili, że wspomniana galaktyka ma kształ dysku, a jej średnica wynosi 26 000 lat świetlnych, zatem 4-krotnie mniej od średnicy Drogi Mlecznej. Byli też w stanie określić historię tworzenia się galaktyki. Okazało się, że w centrum galaktyki bardzo szybko skończył się gaz potrzebny do tworzenia się gwiazd. To zaś może wskazywać na istnienie tam supermasywnej czarnej dziury.
Innym ważnym elementem fotografii jest cienka linia biegnąca na lewo od centrum. Nazwana La Flaca (Chudzina) przedstawia poddaną soczewkowaniu grawitacyjnemu galaktykę znajdującą się w odległości 11 miliardów lat świetlnych. W pobliżu widać kolejną galaktykę, w której naukowcy zauważyli czerwonego olbrzyma i nazwali go Quyllur, co w języku keczua oznacza gwiazdę.
Dzięki soczewkowaniu grawitacyjnemu przez El Gordo Hubble już wcześniej odkrył inne gwiazdy, np. Earendel, jednak wszystkie były błękitnymi nadolbrzymami. Quyllur to pierwszy czerwony olbrzym zaobserwowany w odległości większej niż miliard lat świetlnych od Ziemi. Takie gwiazdy, przez ich duże przesunięcie ku czerwieni, może odkryć tylko Webb.
Zdjęcia ujawniły też inne interesujące obiekty, jak np. młodą gromadę galaktyk, która zaczęła tworzyć się 12,1 miliarda lat temu. Prawdopodobnie składa się ona z 17 galaktyk.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.