Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sztuczna inteligencja opisuje echokardiograf lepiej niż technik

Rekomendowane odpowiedzi

Sztuczna inteligencja lepiej niż technik-elektroradiolog ocenia i diagnozuje funkcjonowanie serca na podstawie badań ultrasonograficznych, wynika z badań przeprowadzonych przez naukowców z Cedars-Sinai Medical Center. Randomizowane testy prowadzili specjaliści ze Smidt Heart Institute i Division of Articifial Intelligence in Medicine.

Uzyskane wyniki będą miały natychmiastowy wpływ na obrazowanie funkcji serca oraz szerszy wpływ na całe pole badań obrazowych serca, mówi główny autor badań, kardiolog David Ouyang. Pokazują bowiem, że wykorzystanie sztucznej inteligencji na tym polu poprawi jakość i efektywność obrazowania echokardiograficznego.

W 2020 roku eksperci ze Smidt Heart Institute i Uniwersytetu Stanforda stworzyli jeden z pierwszych systemów sztucznej inteligencji wyspecjalizowany w ocenie pracy serca, a w szczególności w ocenie frakcji wyrzutowej lewej komory. To kluczowy parametr służący ocenie pracy mięśnia sercowego. Teraz, bazując na swoich wcześniejszych badaniach, przeprowadzili eksperymenty, w ramach których wykorzystali opisy 3495 echokardiografii przezklatkowych. Część badań została opisana przez techników, część przez sztuczną inteligencję. Wyniki badań wraz z ich opisami otrzymali kardiolodzy, którzy mieli poddać je ocenie.

Okazało się, że kardiolodzy częściej zgadzali się z opisem wykonanym przez sztuczną inteligencję niż przez człowieka. W przypadku SI poprawy wymagało 16,8% opisów, natomiast kardiolodzy wprowadzili poprawki do 27,2% opisów wykonanych przez techników. Lekarze nie byli też w stanie stwierdzić, które opisy zostały wykonane przez techników, a które przez sztuczą inteligencję. Badania wykazały również, że wykorzystanie AI zaoszczędza czas zarówno kardiologów, jak i techników.

Poprosiliśmy naszych kardiologów, by powiedzieli, które z opisów wykonała sztuczna inteligencja, a które technicy. Okazało się, że lekarze nie są w stanie zauważyć różnicy. To pokazuje, jak dobrze radzi sobie sztuczna inteligencja i że można ją bezproblemowo wdrożyć do praktyki klinicznej. Uważamy to za dobry prognostyk dla dalszych testów na wykorzystaniem SI na tym polu, mówi Ouyang.

Badacze uważają, że wykorzystanie AI pozwoli na szybszą i sprawniejszą diagnostykę. Oczywiście o ostatecznym opisie badań obrazowych nie będzie decydował algorytm, a kardiolog. Tego typu badania, kolejne testy i artykuły naukowe powinny przyczynić się do szerszego dopuszczenia systemów AI do pracy w opiece zdrowotnej.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W Journal of Medical Internet Research ukazał się opis eksperymentu, w ramach którego ChatGPT miał stawiać diagnozy medyczne i proponować dalsze działania na podstawie opisanych objawów. Algorytm poradził sobie naprawdę nieźle. Udzielił prawidłowych odpowiedzi w 71,7% przypadków. Najlepiej wypadł przy ostatecznych diagnozach, gdzie trafność wyniosła 76,9%, najgorzej poradził sobie z diagnozą różnicową. Tutaj jego trafność spadła do 60,3%.
      Autorzy eksperymentu wykorzystali 36 fikcyjnych przypadków klinicznych opisanych w Merck Manual. Przypadki te są wykorzystywane podczas szkoleń lekarzy i innego personelu medycznego. Naukowcy z Harvard Medical School, Brigham and Women'a Hospital oraz Mass General Brigham wprowadzili do ChataGPT opisy tych przypadków, a następnie zadawali maszynie pytanie, dołączone w podręczniku do każdego z przypadków. Wykluczyli z badań pytania dotyczące analizy obrazów, gdyż ChatGPT bazuje na tekście.
      Najpierw sztuczna inteligencja miała za zadanie wymienić wszystkie możliwe diagnozy, jakie można postawić na podstawie każdego z opisów. Następnie poproszono ją, by stwierdziła, jaki dodatkowe badania należy przeprowadzić, później zaś ChatGPT miał postawić ostateczną diagnozę. Na koniec zadaniem komputera było opisanie metod leczenia.
      Średnia trafność odpowiedzi wynosiła 72%, jednak różniła się w zależności od zadania. Sztuczna inteligencja najlepiej wypadła podczas podawania ostatecznej diagnozy, którą stawiała na podstawie początkowego opisu przypadku oraz wyników dodatkowych badań. Trafność odpowiedzi wyniosła tutaj 76,9%. Podobnie, bo z 76-procentową trafnością, ChatGPT podawał dodatkowe informacje medyczne na temat każdego z przypadków. W zadaniach dotyczących zlecenia dodatkowych badań oraz metod leczenia czy opieki, trafność spadała do 69%. Najgorzej maszyna wypadła w diagnozie różnicowej (60,3% trafnych odpowiedzi). Autorzy badań mówią, że nie są tym zaskoczeni, gdyż diagnoza różnicowa jest bardzo trudnym zadaniem. O nią tak naprawdę chodzi podczas nauki w akademiach medycznych i podczas rezydentury, by na podstawie niewielkiej ilości informacji dokonać dobrego rozróżnienia i postawić diagnozę, mówi Marc Succi z Harvard Medical School.
      Być może w przyszłości podobne programy będą pomagały lekarzom. Zapewne nie będzie to ChatGPT, ale rozwijane już systemy wyspecjalizowane właśnie w kwestiach medycznych. Zanim jednak trafią do służby zdrowia powinny przejść standardowe procedury dopuszczenia do użytku, w tym testy kliniczne. Przed nimi zatem jeszcze długa droga.
      Autorzy opisanych badań przyznają, że miały one ograniczenia. Jednym z nich było wykorzystanie fikcyjnych opisów przypadków, a nie rzeczywistych. Innym, niewielka próbka na której testowano ChatGPT. Kolejnym zaś ograniczeniem jest brak informacji o sposobie działania i treningu ChataGPT.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy Deep Blue wygrał w szachy z Garri Kasparowem, a w 2016 roku AlphaGo pokonał w go Lee Sedola wiedzieliśmy, że jesteśmy świadkami ważnych wydarzeń. Były one kamieniami milowymi w rozwoju sztucznej inteligencji. Teraz system sztucznej inteligencji „Swift” stworzony na Uniwersytecie w Zurychu pokonał mistrzów świata w wyścigu dronów.
      Swift stanął do rywalizacji z trzema światowej klasy zawodnikami w wyścigu, podczas którego zawodnicy mają założone na głowy specjalne wyświetlacze do których przekazywany jest obraz z kamery drona i pilotują drony lecące z prędkością przekraczającą 100 km/h.
      Sport jest bardziej wymagający dla sztucznej inteligencji, gdyż jest mniej przewidywalny niż gra planszowa niż gra wideo. Nie mamy idealnej wiedzy o dronie i środowisku, zatem sztuczna inteligencja musi uczyć się podczas interakcji ze światem fizycznym, mówi Davide Scaramuzza z Robotik- und Wahrnehmungsgruppe  na Uniwersytecie w Zurychu.
      Jeszcze do niedawna autonomiczne drony potrzebowały nawet dwukrotnie więcej czasu by pokonać tor przeszkód, niż drony pilotowane przez ludzi. Lepiej radziły sobie jedynie w sytuacji, gdy były wspomagane zewnętrznym systemem naprowadzania, który precyzyjne kontrolował ich lot. Swift reaguje w czasie rzeczywistym na dane przekazywane przez kamerę, zatem działa podobnie jak ludzie. Zintegrowana jednostka inercyjna mierzy przyspieszenie i prędkość, a sztuczna sieć neuronowa, na podstawie obrazu z kamery lokalizuje położenie drona i wykrywa kolejne punkty toru przeszkód, przez które dron musi przelecieć. Dane z obu tych jednostek trafiają do jednostki centralnej – również sieci neuronowej – która decyduje o działaniach, jakie należy podjąć, by jak najszybciej pokonać tor przeszkód.
      Swift był trenowany metodą prób i błędów w symulowanym środowisku. To pozwoliło na zaoszczędzenie fizycznych urządzeń, które ulegałyby uszkodzeniom, gdyby trening prowadzony był na prawdziwym torze. Po miesięcznym treningu Swift był gotowy do rywalizacji z ludźmi. Przeciwko niemu stanęli Alex Vanover, zwycięzca Drone Racing League z 2019 roku, Thomas Bitmatta lider klasyfikacji 2019 MultiGP Drone Racing oraz trzykroty mistrz Szwajcarii Marvin Schaepper.
      Seria wyścigów odbyła się w hangarze lotniska Dübendorf w pobliżu Zurychu. Tor ułożony był na powierzchni 25 na 25 metrów i składał się z 7 bramek, przez które należało przelecieć w odpowiedniej kolejności, by ukończyć wyścig. W międzyczasie należało wykonać złożone manewry, w tym wywrót, czyli wykonanie półbeczki (odwrócenie drona na plecy) i wyprowadzenie go półpętlą w dół do lotu normalnego.
      Dron kontrolowany przez Swift pokonał swoje najlepsze okrążenie o pół sekundy szybciej, niż najszybszy z ludzi. Jednak z drugiej strony ludzie znacznie lepiej adaptowali się do warunków zewnętrznych. Swift miał problemy, gdy warunki oświetleniowe były inne niż te, w których trenował.
      Można się zastanawiać, po co drony mają latać bardzo szybko i sprawnie manewrować. W końcu szybki lot wymaga większej ilości energii, więc taki dron krócej pozostanie w powietrzu. Jednak szybkość lotu i sprawne manewrowanie są niezwykle istotne przy monitorowaniu pożarów lasów, poszukiwaniu osób w płonących budynkach czy też kręcenia scen filmowych.
      Warto tutaj przypomnieć, że systemy sztucznej inteligencji pokonały podczas symulowanych walk doświadczonego wykładowcę taktyki walki powietrznej oraz jednego z najlepszych amerykańskich pilotów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W przypadku sztucznej inteligencji z Osaki powiedzenie „wyglądasz na swój wiek” odnosi się nie do twarzy, a do... klatki piersiowej. Naukowcy z Osaka Metropolitan University opracowali zaawansowany model sztucznej inteligencji, który ocenia wiek człowieka na podstawie zdjęć rentgenowskich klatki piersiowej. Jednak, co znacznie ważniejsze, jeśli SI odnotuje różnicę pomiędzy rzeczywistym wiekiem, a wiekiem wynikającym ze zdjęcia, może to wskazywać na chroniczną chorobę. System z Osaki może zatem przydać się do wczesnego wykrywania chorób.
      Zespół naukowy, na którego czele stali Yasuhito Mitsuyama oraz doktor Daiju Ueda z Wwydziału Radiologii Diagnostycznej i Interwencyjnej, najpierw opracował model sztucznej inteligencji, który na podstawie prześwietleń klatki piersiowej oceniał wiek zdrowych osób. Następnie model swój wykorzystali do badania osób chorych.
      W sumie naukowcy wykorzystali 67 009 zdjęć od 36 051 zdrowych osób. Okazało się, że współczynnik korelacji pomiędzy wiekiem ocenianym przez SI, a rzeczywistym wiekiem badanych wynosił 0,95. Współczynnik powyżej 0,90 uznawany jest za bardzo silny.
      Uczeni z Osaki postanowili sprawdzić, na ile ich system może być stosowany jako biomarker chorób. W tym celu wykorzystali 34 197 zdjęć rentgenowskich od chorych osób. Okazało się, że różnica pomiędzy oceną wieku pacjenta przez AI, a wiekiem rzeczywistym jest silnie skorelowana z różnymi chorobami, jak np. nadciśnienie, hiperurykemia czy przewlekła obturacyjna choroba płuc. Im więcej lat dawała pacjentowi sztuczna inteligencja w porównaniu z jego rzeczywistym wiekiem, tym większe było prawdopodobieństwo, że cierpi on na jedną z tych chorób.
      Wiek chronologiczny to jeden z najważniejszych czynników w medycynie. Nasze badania sugerują, że wiek oceniany na podstawie prześwietlenia klatki piersiowej może oddawać rzeczywisty stan zdrowia. Będziemy nadal prowadzili nasze badania. Chcemy sprawdzić, czy system ten nadaje się do oceny zaawansowania choroby, przewidzenia długości życia czy możliwych komplikacji pooperacyjnych, mówi Mitsuyama.
      Szczegóły badań opublikowano na łamach The Lancet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niewielkie roboty, które pędzą przez płyn z niewiarygodna prędkością, mogą pewnego dnia posłużyć do naprawy ludzkiego ciała od wewnątrz. Wyobraźmy sobie roboty, które będą mogły przeprowadzać zabiegi chirurgiczne. Zamiast kroić pacjenta, będziemy mogli podać mu roboty w formie pigułki lub zastrzyku, a one przeprowadzą zabieg, mówi doktor Jin Lee z Wydziału Inżynierii Biologicznej i Chemicznej University of Colorado w Boulder. Taka wizja to obecnie odległa przyszłość, ale same roboty już powstały.
      Lee i jego zespół stworzyli urządzenia o średnicy 20 mikrometrów. To około 3-krotnie mniej niż średnica ludzkiego włosa. Roboty poruszają się w płynie w prędkością 3 mm/s zatem w ciągu minuty przebywają odległość 9000 razy większą niż ich własna długość. Przeciętny samochód osobowy, żeby poszczycić się takim osiągami, musiałby poruszać się z prędkością ok. 2400 km/h.
      Jednak zalety mikrorobotów nie ograniczają się do szybkiego przemieszczania się. Podczas eksperymentów naukowcy wykorzystali je do dostarczenia deksametazonu do pęcherza myszy. To wskazuje, że można by je wykorzystać do leczenia chorób pęcherza i innych schorzeń u ludzi.
      Mikroroboty zostały wykonane z biokompatybilnych polimerów metodą podobną do druku 3D. Przypominają niewielką rakietę z przyczepionymi trzema łopatami. W każdym z nich uwięziono pęcherzyk powietrza. Gdy taki robot zostanie wystawiony na działanie fal akustycznych – w eksperymentach wykorzystano ultradźwięki – pęcherzyk zaczyna wibrować, odpycha płyn i robot się porusza.
      Naukowcy postanowili przetestować swoje urządzenie na mysim modelu śródmiąższowego zapalenia pęcherza moczowego. To bolesna choroba powodująca silny ból w miednicy. Jej leczenie jest niekomfortowe. Pacjenci muszą zgłaszać się do lekarza, gdzie za pośrednictwem cewnika do pęcherza wprowadzany jest deksametazon. Naukowcy stworzyli mikroroboty zawierające ten lek, a następnie wprowadzili urządzenia do pęcherza myszy. Roboty rozprzestrzeniły się po organizmie, a następnie przylgnęły do ścian pęcherza, gdzie przez dwa dni powoli uwalniały środek leczniczy. Dzięki temu można było w dłuższym czasie podczas więcej lekarstwa, poprawiając stan pacjenta.
      Twórcy robotów zastrzegają, że zanim trafią one do ludzkiego organizmu, muszą zostać jeszcze udoskonalone. Pierwszym celem jest uczynienie urządzeń w pełni biodegradowalnymi, by całkowicie rozpuszczały się w organizmie po zrealizowaniu zadania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tegoroczna Nagroda Nobla w dziedzinie fizjologii lub medycyny została przyznana Svante Pääbo za odkrycia dotyczące ludzkiej ewolucji oraz genomu wymarłych homininów. Pääbo jest szwedzkim genetykiem, specjalistą od genetyki ewolucyjnej i jednym z najwybitniejszych żyjących badaczy ewolucji człowieka. Zsekwencjonował DNA neandertalczyka, w 2010 roku ogłosił odkrycie nieznanego wcześniej gatunku człowieka, denisowianina.
      Dzięki swoim pionierskim badaniom Svante Pääbo dokonał czegoś, co wydawało się niemożliwe: zsekwencjonował genom neandertalczyka, wymarłego krewniaka człowieka współczesnego. Dokonał też sensacyjnego odkrycia nieznanego wcześniej hominina, denisowianina. Pääbo zauważył też, że już po wyjściu człowieka z Afryki, przed około 70 000 laty doszło do wymiany genów pomiędzy tymi obecnie wymarłymi homininami, a H. sapiens. Ten przepływ genów do człowieka współczesnego do dzisiaj wywiera na nas wpły, ma na przykład znaczenie dla reakcji naszego układu odpornościowego na infekcje, czytamy w uzasadnieniu Komitetu Noblowskiego.
      Komitet podkreślił, że nowatorskie badania prowadzone przez Szweda doprowadziły do powstania nowej gałęzi nauki – paleogenomiki. O pracy wybitnego uczonego niejednokrotnie informowaliśmy na łamach KopalniWiedzy.
      Już na początku swojej kariery naukowej Pääbo zastanawiał się nad możliwością wykorzystania nowoczesnych metod genetyki do badania genomu neandertalczyków. Szybko jednak zdał sobie sprawę z tego, że po tysiącach lat pozostaje niewiele materiału genetycznego, a ten, który uda się uzyskać, jest silnie zanieczyszczony przez bakterie i współczesnych ludzi. Pääbo, będąc studentem Allana Wilsona, pioniera biologii ewolucyjnej, zaczął pracować nad metodami badania DNA neandertalczyków. Gdy w 1990 roku został zatrudniony na Uniwersytecie w Monachium, kontynuował swoje zainteresowania. Rozpoczął od prób analizy mitochondrialnego DNA (mtDNA). mtDNA jest bardzo małe i zawiera niewielką część informacji genetycznej, ale występuje w olbrzymiej liczbie kopii, co zwiększało szanse na sukces. W końcu w 1997 roku mógł ogłosić sukces. Z liczącego 40 000 lat kawałka kości udało się uzyskać mtDNA. Tym samym po raz pierwszy w historii dysponowaliśmy genomem naszego wymarłego krewniaka. Porównanie z genomem H. sapiens i szympansem pokazało, że H. neanderthalensis był genetycznie odmiennym gatunkiem.
      Uczony nie spoczął jednak na laurach. Z czasem przyjął propozycję stworzenia Instytutu Antropologii Ewolucyjnej im. Maxa Plancka w Lipsku. W 2009 roku zaprezentował pierwszą, składającą się z ponad 3 miliardów par zasad, sekwencję DNA neandertalczyka. Dzięki temu dowiedzieliśmy się, że ostatni przodek H. neanderthalensis i H. sapiens żył około 800 000 lat temu.
      Uczony rozpoczął projekt, w ramach którego porównywał związki łączące neandertalczyków i ludzi współczesnych żyjących w różnych częściach świata. Okazało się, że sekwencje genetyczne neandertalczyków są bardziej podobne do ludzi żyjących obecnie na terenie Europy i Azji niż do mieszkańców Afryki, a to wskazywało na krzyżowanie się obu gatunków.
      W 2010 roku naukowiec dokonał kolejnego znaczącego odkrycia. Badania nad fragmentem kości znalezionym w Denisowej Jaskini na Syberii, przyniosły kolejną sensację. Okazało się, że kość należała do nieznanego wcześniej gatunku człowieka. Tegoroczny noblista zaczął zgłębiać temat i stwierdził, że pomiędzy H. sapiens a denisowianami również dochodziło do przepływu genów. Związki pomiędzy oboma naszymi gatunkami najwyraźniej widoczne są w Azji Południowo-Wschodniej. Nawet 6% genomu tamtejszych ludzi to dziedzictwo denisowian.
      Odkrycia Pääbo pozwoliły nam na nowo zrozumieć naszą ewolucję. Gdy H. sapiens opuścił Afrykę, w Eurazji istniały co najmniej dwie wymarłe obecnie populacje homininów. Neandertalczycy mieszkali w zachodniej Eurazji, a denisowianie zajmowali wschodnią część kontynentu. Podczas migracji z Afryki H. sapiens nie tylko napotkał i krzyżował się z neandertalczykami, ale również z denisowianami, piszą przedstawiciele Komitetu Noblowskiego.
      Paleogenomika, która powstała dzięki badaniom Svante Pääbo, pomaga nam lepiej zrozumieć naszą własną historię. Dowiedzieliśmy się, że krzyżowanie się z wymarłymi gatunkami człowieka wciąż wpływa na fizjologię współczesnych ludzi. Odziedziczona pod denisowianach wersja genu EPAS1 pozwoliła H. sapiens przetrwać na wysoko położonych terenach i zasiedlić Tybet, a neandertalskie geny wpływają na pracę naszego układu odpornościowego.
      Dzięki Pääbo mamy szansę dowiedzieć się, dlaczego nasz gatunek odniósł sukces ewolucyjny. Neandertalczycy również żyli w grupach, mieli duże mózgi, używali narzędzi, jednak ich kultura i technologia rozwijały się bardzo powoli. Przed odkryciami dokonanymi przez Svante Pääbo nie znaliśmy różnic genetycznych pomiędzy nimi a nami.
      Svante Pääbo urodził się w 1955 roku w Sztokholmie. Jego matką jest estońska chemik Karin Pääbo , a ojcem biochemik Sune Bergström, który w 1982 roku otrzymał Nagrodę Nobla w fizjologii lub medycynie. W 1986 roku Svante obronił doktorat na Uniwersytecie w Uppsali. Otrzymał go za badania nad wpływem proteiny E19 adenowirusów na układ odpornościowy. W 2007 roku magazyn Time uznał go za jednego ze 100 najbardziej wpływowych ludzi na świecie. Jest laureatem licznych nagród. W 2014 roku napisał książkę „Neandertalczyk. W poszukiwaniu zaginionych genomów”.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...