-
Similar Content
-
By KopalniaWiedzy.pl
Zderzenia jąder ołowiu zachodzą w ekstremalnych warunkach fizycznych. Ich przebieg można opisać za pomocą modelu zakładającego, że przekształcająca się, ekstremalnie gorąca materia – plazma kwarkowo-gluonowa – płynie w postaci setek smug. Dotychczas „ogniste smugi” wydawały się konstrukcjami czysto teoretycznymi. Jednak najnowsza analiza zderzeń pojedynczych protonów wzmacnia tezę, że odpowiada im rzeczywiste zjawisko.
W 2017 roku fizycy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie przedstawili przemawiający do wyobraźni model zjawisk zachodzących w trakcie zderzeń jąder ołowiu przy wysokich energiach. W modelu założono, że powstająca w zderzeniach egzotyczna materia, plazma kwarkowo-gluonowa, oddala się od miejsca kolizji w formie licznych smug, rozciągniętych wzdłuż pierwotnego kierunku ruchu jąder. Smugi te powinny poruszać się tym szybciej, im bardziej są odległe od osi zderzenia. Obecnie badacze zastosowali model „smug ognistych” do znacznie prostszych zderzeń proton-proton. Gdy porównali swoje przewidywania z danymi zebranymi w eksperymentach w europejskim ośrodku badań jądrowych CERN, czekała ich nie lada niespodzianka.
Jądra ołowiu zawierają ponad dwieście protonów i neutronów. Gdy dwa tak duże obiekty się zderzają, przy odpowiednio wielkich energiach powstaje płynna mieszanina kwarków i gluonów (cząstek w normalnych warunkach zlepiających kwarki w protony i neutrony). Plazma kwarkowogluonowa błyskawicznie ekspanduje i równocześnie się wychładza. W rezultacie istnieje tak krótko i w tak małym obszarze przestrzeni (o rozmiarach zaledwie setek milionowych części jednej miliardowej metra), że nie potrafimy jej bezpośrednio obserwować. Na dodatek interakcje między cząstkami plazmy są zdominowane przez oddziaływania silne i są tak skomplikowane, że z ich opisem współczesna fizyka po prostu sobie nie radzi. Ślady plazmy kwarkowo-gluonowej widać tylko pośrednio, w cząstkach wybiegających z miejsca zderzenia. Teoria przewiduje bowiem, że jeśli plazma kwarkowo-gluonowa rzeczywiście się wytworzyła, detektory powinny rejestrować wyraźnie większą liczbę cząstek dziwnych (a więc takich, które zawierają kwarki dziwne s).
Zderzenia proton-proton w akceleratorach w CERN produkują mało cząstek dziwnych. Powszechnie przyjmuje się więc, że w ich trakcie plazma kwarkowo-gluonowa nie powstaje. Uwzględniliśmy ten fakt w naszym modelu smug ognistych, po czym skonfrontowaliśmy jego przewidywania z danymi z eksperymentu NA49 na akceleratorze SPS. Zgodność była zdumiewająco dobra. Można więc powiedzieć, że teraz 'zobaczyliśmy' smugę ognistą w jakościowo innych warunkach fizycznych, tam, gdzie w ogóle się jej nie spodziewaliśmy!, tłumaczy dr hab. Andrzej Rybicki (IFJ PAN), jeden z autorów publikacji w czasopiśmie Physical Review C.
Kolizję dwóch jąder ołowiu musieliśmy modelować jako złożenie kilkuset smug. W takich warunkach trudno powiedzieć cokolwiek o własnościach pojedynczej smugi. Jednak gdy z modelu wyekstrahowaliśmy rozkład pospieszności, czyli relatywistycznej prędkości cząstek produkowanych przez pojedynczą smugę, okazało się, że jej kształt bardzo dobrze opisuje prawdziwe dane z pomiarów produkcji cząstek w zderzeniach proton-proton!, precyzuje mgr Mirek Kiełbowicz, doktorant IFJ PAN.
Aby wykresy, otrzymane za pomocą modelu smug ognistych zbudowanego dla zderzeń jąder ołowiu, zgadzały się z danymi eksperymentalnymi dla zderzeń proton-proton, należało je przeskalować o czynnik 0,748. Krakowscy badacze wykazali, że parametr ten nie jest swobodny. Pojawia się on po uwzględnieniu w bilansie energetycznym zmian związanych z różną produkcją cząstek dziwnych i można go odtworzyć z danych eksperymentalnych. Był to kolejny silny argument wzmacniający fizyczną poprawność modelu.
Pracuję nad modelem smug ognistych w ramach mojej pracy magisterskiej, więc nie zdziwiło mnie, że opisuje on dane ze zderzeń jądro-jądro w sporym zakresie energii. Kiedy jednak zobaczyłem, że wyekstrahowana przez nas funkcja fragmentacji tak dobrze zgadza się z danymi ze zderzeń proton-proton, trudno było ukryć zaskoczenie, wspomina Łukasz Rozpłochowski, student Uniwersytetu Jagiellońskiego współpracujący z grupą z IFJ PAN.
Materia powstająca w zderzeniach proton-proton, chłodniejsza i jakościowo inna niż plazma kwarkowo-gluonowa, wydaje się więc zachowywać jak pojedyncza ognista smuga. Jej pewne własności – takie jak prędkości emitowanych cząstek czy sposoby ich rozpadów – z jakiegoś powodu są zdumiewająco podobne do własności ognistych smug plazmy kwarkowo-gluonowej. A ponieważ plazma kwarkowo-gluonowa tworzy się przy większych energiach i w zderzeniach obiektów kwantowych o dużej złożoności, uprawnione staje się stwierdzenie, że to ona dziedziczy niektóre cechy materii formującej ogniste smugi w zderzeniach proton-proton.
Gdy opisywaliśmy zderzenia jądro-jądro, ogniste smugi były dla nas jedynie pewnymi abstrakcyjnymi konstrukcjami, czymś czysto teoretycznym. Nie wnikaliśmy w ich fizyczną naturę, w to, czym mogą być w rzeczywistości. Przeżyliśmy prawdziwy wstrząs, gdy zestawiając dane eksperymentalne z naszym modelem odkryliśmy, że to, co powstaje w zderzeniach proton-proton, zachowuje się dokładnie tak jak nasza pojedyncza ognista smuga, podsumowuje dr Rybicki.
Wyniki najnowszej analizy, przeprowadzonej przez krakowskich fizyków w ramach grantu SONATA BIS nr 2014/14/E/ST2/00018 Narodowego Centrum Nauki, wzmacniają zatem przypuszczenie, że ognistym smugom, wedle teorii formującym się w zderzeniach proton-proton i jądro-jądro, odpowiadają rzeczywiste procesy fizyczne zachodzące w przepływach ekstremalnie gorącej materii kwantowej.
« powrót do artykułu -
By KopalniaWiedzy.pl
W laboratoriach Uniwersytetu Kalifornijskiego w San Diego powstał samonaprawiający się hydrożel, który z pewnością znajdzie zastosowanie w medycynie, np. w funkcji szwów czy transporterów leków, oraz przemyśle. Na zasadzie zamka błyskawicznego żel wiąże się w ciągu zaledwie kilku sekund, w dodatku na tyle mocno, że wytrzyma wielokrotne rozciąganie.
Hydrożele powstają z łańcuchów polimeru. Ponieważ są galaretowate, przypominają tkanki miękkie. Wcześniej naukowcy nie potrafili uzyskać błyskawicznie samonaprawiających się żeli, co ograniczało ich zastosowania. Zespół Shyni Varghese poradził sobie z tym wyzwaniem, wykorzystując wolne łańcuchy boczne. Wystają one ze struktury pierwotnej (pierwszorzędowej) jak palce z dłoni i mogą się o siebie zaczepiać.
Samonaprawa to jedna z podstawowych właściwości tkanek żywych, która pozwala im przetrwać powtarzające się uszkodzenia. Nic więc dziwnego, że akademicy nie ustawali w próbach stworzenia sztucznego materiału o podobnych zdolnościach.
Podczas projektowania cząsteczek łańcuchów bocznych zespół korzystał z symulacji komputerowych. Ujawniły one, że zdolność hydrożelu do samonaprawy zależy od długości "palców". Kiedy w kwasowym roztworze umieszczano dwa cylindry z hydrożelu z łańcuchami bocznymi o optymalnej długości, natychmiast do siebie przywierały. Dalsze eksperymenty pokazały, że manipulując pH roztworu, kawałki hydrożelu można łatwo spajać (niskie pH) lub odłączać (wysokie pH). Proces wielokrotnie powtarzano, bez szkody dla siły związania.
Ameya Phadke, doktorantka z laboratorium Varghese, podkreśla, że elastyczność i wytrzymałość hydrożelu w kwaśnym środowisku, takim jak w żołądku, pozwala myśleć o tym materiale w kontekście łatania perforacji żołądka czy kontrolowanego dostarczania leków na wrzody.
Zespół uważa, że samonaprawiający się materiał można by wykorzystać w likwidowaniu przecieków kwasów z uszkodzonych pojemników. Gdy w plastikowym pojemniku wycięto otwór, hydrożel ją zatkał i zahamował wypływ kwasu.
W przyszłości Amerykanie zamierzają uzyskać hydrożele działające przy innych niż kwasowe wartościach pH.
-
By KopalniaWiedzy.pl
Na Florydzie spłonął Senator, jedno z najstarszych drzew na świecie i jednocześnie najstarszy znany cypryśnik błotny. Drzewo liczyło sobie około 3500 lat.
Drzewo nazwano „Senatorem“ na cześć senatora Mosesa Overstreeta, który w 1927 roku podarował państwu tereny, na których rosło drzewo. Utworzono z nich Big Tree Park. W 1929 roku prezydent Calvin Coolidge ogłosił drzewo pomnikiem narodowym.
Senator liczył sobie około 36 metrów wysokości. Wyróżniał się wysokością wśród otaczających go drzew, a było to tym bardziej imponujące, że przetrwał wiele huraganów, w tym i ten, z 1925 roku, który go złamał, skracając o 12 metrów.
Początkowo podejrzewano, że Senator został podpalony. Prawdopodobnie jednak padł on ofiarą sił natury. Przed dwoma tygodniami nad okolicą, w której rosło drzewo, przeszła burza. Śledczy stawiają hipotezę, że w drzewo trafił piorun i Senator zaczął się palić. Niestety, płonął wewnątrz i z zewnątrz nic nie było widać. Gdy ludzie zorientowali się w sytuacji, na ratunek dla Senatora było zbyt późno. Strażakom udało się za to uchronić przed płomieniami pobliskiego cypryśnika Lady Liberty, który liczy sobie około 2000 lat.
-
By KopalniaWiedzy.pl
Pokryte drzewami wysepki z mokradeł Everglades to nie do końca twory geologiczne, lecz właściwie pokryte skałami osadowymi prehistoryczne pryzmy śmieci. Badania archeologiczne wykazały bowiem, że pod warstwą torfu w caliche znajdują się rozmaite artefakty, kości i węgiel drzewny, a pod nimi coś jeszcze.
Zazwyczaj wysepki mają około metra wysokości i kształt łzy. Kiedyś sądzono, że są one posadowione na wybrzuszeniach z węglanów ze skały macierzystej. Kiedyś jednak Robert Carr z Archaeological and Historical Conservancy w Davie na Florydzie ustalił, że pod torfem znajduje się czerwonoszara utwardzona warstwa. Gail Chmura i Maria-Theresia Graf z McGill University postanowiły kontynuować jego badania i zaczęły wykopaliska na kilku wysepkach. Znalazły czerwonoszarą warstwę i stwierdziły, że to caliche - iluwialna skała osadowa złożona głównie z węglanu wapnia (kalcytu). Miała ona 40-75 cm grubości i to w niej tkwiły wspomniane wcześniej artefakty wraz kośćmi i węglem. Gdy badaczki się przez nią przebiły, znalazły pryzmę śmieci sprzed 4 tys. lat.
Jak więc doszło do utworzenia charakterystycznych wysepek? Kanadyjki podają, że zwierciadło wód gruntowych w Everglades podniosło się w ciągu ostatnich 5 tysięcy lat, tak więc wyniesienia stały się wygodną oazą dla drzew. Po ukorzenieniu czerpały one wodę znad skały macierzystej. Ponieważ zawierała za dużo węglanów i fosforanów, rośliny wydzielały je do okolicznej gleby, prowadząc do wytworzenia caliche (w zwykłych okolicznościach skała powstaje wskutek ewaporacji podciąganych kapilarnie roztworów przesyconych kalcytem). Drzewa doprowadziły do powiększenia i dalszego wyniesienia wysepek. Caliche chroni z kolei same drzewa, osłaniając znajdującą się pod spodem glebę przed częstymi pożarami. W takich warunkach życie może się odrodzić. Chmura obawia się jednak, że powodzie zniszczą warstwę z kalcytu.
-
By KopalniaWiedzy.pl
Po raz pierwszy przeprowadzono szczegółowe badania na temat udziału miejscowego ptactwa w diecie inwazyjnego pytona birmańskiego, który osiedlił się w Parku Narodowym Everglades. Wykazały one, że ten obcy gatunek węża stanowi poważne niebezpieczeństwo dla miejscowych ptaków, w tym dla gatunków zagrożonych.
O problemie węży w Everglades pisaliśmy półtora roku temu. Ludzka głupota spowodowała, że na terenie Parku żyją już trzy obce gatunki dużych węży - boa dusiciel, pyton skalny i właśnie pyton birmański.
Naukowcy ze Smithsonian Institution, South Florida Natural Resources Center oraz University of Florida postanowili szczegółowo przyjrzeć się diecie pytona birmańskiego i odkryli, że ptaki stanowią aż 25% jego pożywienia.
Inwazyjny pyton birmański jest szczególnie niebezpieczny dla rodzimych ptaków Ameryki Północnej, gdyż w czasie swojej ewolucji nie miały one do czynienia z tak wielkim polującym na nie gadem. Zagrożenie jest tym większe, że pyton nie ma tutaj naturalnego wroga, który utrzymywałby jego populację pod kontrolą - mówi Carla Dove, ornitolog z National Museum of Natural History.
Naukowcy zbadali dietę 343 pytonów birmańskich. W przewodach pokarmowych 85 z nich znaleziono resztki ptaków. Udało się zidentyfikować 25 różnych gatunków tych latających zwierząt. Cztery z tych gatunków są zagrożone na Florydzie, a jeden jest uznany za zagrożony a terenie całych Stanów Zjedoczonych. Pytony pożerają ptaki różnych rozmiarów. Do małego strzyżyka śpiewnego po dużą czaplę modrą.
Sytuacja może ulec pogorszeniu. Ten pyton jest zdolny do życia w różnych habitatach, a więc jego wpływ nie ogranicza się tylko do rodzimych gatunków Everglades. Pyton birmański szybko się rozmnaża, długo żyje i może polować na duże zwierzęta, a fakt, że poluje też na ptaki to poważne ostrzeżenie i wyzwanie dla agend odpowiedzialnych za ochronę przyrody - dodaje Dove.
Pyton birmański to gatunek pochodzący z Azji Południowo-Wschodniej. Po raz pierwszy zauważono go na wolności w Everglades w 1979 roku. Zwierzę uciekło z hodowli lub zostało celowo wypuszczone na wolność. Obecnie populację pytona birmańskiego w Parku Narodowym Everglades ocenia się na dziesiątki tysięcy osobników.
-
-
Recently Browsing 0 members
No registered users viewing this page.