Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Różowa woda u wybrzeży Kalifornii. Naukowcy prowadzą unikatowe badania

Recommended Posts

Spacerowicze odwiedzający jedną z plaż w San Diego mogli ostatnio oglądać... różową wodę. Niezwykły widok nie był jednak niczym groźnym ani niepokojący. Woda została celowo zabarwiona na różowo przez naukowców, którzy badają, w jaki sposób wody rzek mieszają się z wodami oceanów.

Rzeki i ich estuaria odgrywają ważną rolę w dostarczaniu słodkiej wody oraz osadów i zanieczyszczeń do przybrzeżnych regionów oceanów. Niewiele jednak wiadomo o tym, jak przebiega interakcja lżejszych wód słodkich z cięższymi, gęstszymi i często chłodniejszymi wodami przybrzeżnymi oceanu.

Od początku roku naukowcy ze Scripps Institution of Oceanography i University of Washington kilkukrotnie kolorowali wody bezpiecznym dla środowiska różowym barwnikiem, by obserwować, jak niewielkie estuarium wpływa na przybrzeżne wody oceanu.

Jestem bardzo podekscytowana, bo dotychczas nie prowadzono tego typu badań. To naprawdę unikatowy eksperyment, mówi kierująca eksperymentem oceanograf Sarah Giddings. Zgromadziło się tutaj wielu ekspertów z różnych dziedzin. Sądzę, że uzyskamy naprawdę interesujące dalekosiężne wyniki. Połączymy je z wynikami starszych badań oraz z symulacjami komputerowymi. Chcemy zrozumieć, jak rozprzestrzenia się w oceanie woda z niewielkich estuariów, dodaje. Interesuje mnie, w jaki sposób interakcja sił fizycznych – zderzenia fal oceanu z wpływającą doń wodą z rzeki – wpływa na to, co dzieje się z wodą rzeczną, mówi doktor Alex Simpson.

Barwnik, który zabarwiono wodę rzeki, jest śledzony z lądu, wody i powietrza. Specjalne czujniki zostały umieszczone między innymi na palach wbitych w dno i na samym dnie. Dane zbierane są poprzez pomiary fluoroscencji barwnika, a naukowcy mierzą prądy oceaniczne, wysokość fal, zasolenie i temperaturę wody oraz badają ich zmiany w czasie i wpływ na nie wód słodkich. W ten sposób zyskają informację o konkretnym miejscu badań, ale dzięki temu lepiej można będzie zrozumieć, jak niewielkie i średniej wielkości estuaria wpływają na rozprzestrzenianie się osadów, zanieczyszczeń, narybku i innych istotnych elementów środowiska przybrzeżnego.

Wiele z wcześniejszych badań tego typu skupiało się na dużych rzekach, dlatego też niewiele wiemy o mniejszych ciekach wodnych. Na miejsce eksperymentów wybrano Los Peñasquitos Lagoon, gdyż jest to bardzo reprezentatywny przykład niewielkiego estuarium, z którego woda przedostaje się na dość jednorodne wybrzeże.

Barwnik wypuszczany jest w czasie odpływu, gdyż naukowcy chcą mieć gwarancję, że zostanie on poniesiony w głąb oceanu. Gołym okiem widać go przez wiele godzin, a instrumenty naukowe są w stanie wykryć go przez około 24 godziny.

Badania prowadzone są w ramach projektu Plumes in Nearshore Conditions (PiNC).


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Flamingi wykorzystują jeden z najbardziej złożonych systemów odżywiania się wśród ptaków. Każdy z nas widział ich niezwykły sposób pobierania pokarmu, w czasie którego ich głowa zwrócona jest do góry nogami. Wiemy, że filtrują pokarm z wody. Jednak, jak się okazuje, nie jest to proces pasywny. Ptaki potrafią odpowiednio kierować strumień wody w stronę dzioba.
      Biolog z Uniwersytetu Kalifornijskiego w Berkeley, Victor Ortega Jiménez, zainteresował się sposobem zdobywania pokarmu przez flamingi gdy odwiedził ogród zoologiczny. Zauważył, że jedzące ptaki drepczą w miejscu. Jednak nie widział, co dzieje się pod wodą. Rozpoczął więc badania, w czasie których najpierw przez kilka tygodni flamingi z zoo były uczone jedzenia z tac wypełnionych wodą. Następnie za pomocą szybkich kamer i laserów obrazowano cały proces. W końcu naukowcy stworzyli na drukarkach 3D modele głów flamingów, by lepiej przyjrzeć się ruchowi wody. W końcu zaś prawdziwy dziób flaminga umocowano na maszynie, które otwierała go i zamykała, a jednocześnie symulowano ruchy języka ptaka.
      Z badań wynika, że ptaki potrafią kierować wodę wraz z pożywieniem do swoich dziobów. Dreptanie w miejscu służy wzbiciu do góry osadów z dna wraz ze znajdującymi się tam ofiarami flamingów. Następnie ptaki wykonują szybkie ruchy głową w górę i w dół, by utworzyć podobne do tornado wiry. A dodatkowe ruchy dziobem i językiem prowadzą do powstania mniejszych wirów, dzięki czemu niezwykle efektywnie łapią zdobycz. Są w stanie schwytać w ten sposób 7-krotnie więcej krewetek.
      Naukowcy obliczyli też, jakie jest najbardziej efektywne tempo ruchów flaminga. Wytworzenie wirów wymaga poruszania głową z prędkością niemal 40 cm/s. Jednocześnie dolna część ich dzioba wykonuje około 12 ruchów na sekundę.
      W najbliższej przyszłości naukowcy chcą zbadać, co dzieje się wewnątrz dziobów żerujących flamingów. Mają nadzieję, że opisanie tych zjawisk pomoże na przykład w stworzeniu technologii pozwalającej efektywnie wychwytywać z wody glony lub mikroplastik. Zachowanie żerujących flamingów wygląda niepoważnie, ale tworzy to użyteczny przepływ wody, chwali badania kolegów Elizabeth Brainerd z Brown University.
      Niezwykły sposób odżywiania się flamingów służy nie tylko im. Od kilku lat wiadomo, że podążające za nimi płaskonogi trójbarwne chwytają nawet 2-krotnie więcej pożywienia, korzystając z wody wzburzanej przez flamingi.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ludzkość wybiera się na Księżyc i Marsa, coraz bardziej szczegółowo bada planety Układu Słonecznego i zaczyna przyglądać się planetom pozasłonecznym, a tymczasem niewiele wiemy o samej Ziemi. Naukowcy z Ocean Discovery League, niedochodowej organizacji, której celem jest przyspieszenia badań nad głębiej położonymi partiami oceanów, poinformowali na łamach Science Advances, że po dekadach badań ludzkość widziała mniej niż 0,001% powierzchni dna w głębszych partiach oceanów. Czyli takich, położonych poniżej 200 metrów pod poziomem morza.
      Obszary znajdujące się na głębokości poniżej 200 metrów utrzymują zróżnicowane ekosystemy, wytwarzają tlen, regulują klimat, są niezbędne do zachowania zdrowia całej planety. A mimo to praktycznie nic o nich nie wiemy. Zajmują one 66% powierzchni Ziemi, to około 336 milionów kilometrów kwadratowych. Dotychczas obserwowaliśmy zaś około 3300 km2. To powierzchnia niemal 100-krotnie mniejsza od powierzchni Polski, zaledwie 5-krotnie większe od największego polskiego miasta, Gdańska.
      Obserwacje wizualne (czy to prowadzone przez badaczy na pokładach batyskafów czy też przez roboty wyposażone w kamery) są jednym z trzech najważniejszych – obok mapowania i pobierania próbek – metod badania dna morskiego. Pozwala ono na określenie kontekstu zbieranych próbek, obserwację życia, ocenę bioróżnorodności i obfitości organizmów, ocenę stanu biologii i geologii oceanów. To dzięki nim odkryto pierwsze kominy hydrotermalne, określono wpływ katastrofy Deepwater Horizon na dno morskie i opisano odradzanie się koralowców po katastrofie, znaleziono dobrze zachowane wraki na Morzu Czarnym. Obecnie, gdy wiemy, że ludzkość od wieków wpływa na oceany, czy to przez składowanie w nich śmieci, zanieczyszczanie odpadami z działalności rolniczej i przemysłowej, eksploatację zasobów biologicznych i geologicznych czy zakwaszanie wód oceanów, istnieje coraz większa potrzeba prowadzenia badań wizualnych.
      Tymczasem, jak się dowiadujemy, nie tylko poznaliśmy zaledwie 0,001% powierzchni dna oceanicznego położonego poniżej 200 metrów, ale te poznane obszary są skupione wokół kilku wybranych krajów. Z powodu dużych kosztów oraz trudności technicznych związanych z badaniami dna aż 65% powierzchni, którą wizualnie poznaliśmy, znajduje się w odległości 200 mil morskich od USA, Japonii i Nowej Zelandii, a aż 97% badań przeprowadziło zaledwie pięć krajów: USA, Japonia, Nowa Zelandia, Francja i Niemcy. To zaś oznacza, że niewiele możemy powiedzieć o tym, jak wygląda dno oceanów i nie można bezpiecznie wyciągać wniosków na podstawie tak niewielkiego poznanego obszaru w tak niewielu miejscach.
      Jest to szczególnie ważne w momencie, w którym coraz częściej mówi się o zintensyfikowaniu działań górniczych dna morskiego i wydobywaniu stamtąd surowców. Nie mamy bowiem najmniejszego pojęcia, co się na dnie znajduje, zatem co możemy zniszczyć prowadząc eksploatację oraz jaki wpływ zniszczenia te będą miały na całą planetę, w tym i na nas.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niewidoczna z Ziemi strona Księżyca zawiera znacznie mniej wody, niż część widoczna – donoszą chińscy naukowcy. Takie zaskakujące wnioski płyną z badań próbek bazaltu zebranych przez misję Chang'e-6. Wyniki badań, opublikowane na łamach Nature, pozwolą lepiej zrozumieć ewolucję ziemskiego satelity.
      Dostarczone na Ziemię próbki zawierały mniej niż 2 mikrogramy wody w gramie. Nigdy wcześniej nie zanotowano tak mało H2O na Księżycu. Wcześniejsze badania próbek ze strony widocznej z Ziemi zawierały nawet do 200 mikrogramów wody na gram.
      Naukowcy potrafią mierzyć zawartość wody w materiale z dokładnością do 1–1,5 części na milion. Już widoczna strona Księżyca jest niezwykle sucha. A ta niewidoczna całkowicie zaskoczyła naukowców. Nawet najbardziej suche pustynie na Ziemi zawierają około 2000 części wody na milion. To ponad tysiąckrotnie więcej, niż zawiera jej niewidoczna z Ziemi część Księżyca, mówi główny autor badań, profesor Hu Sen z Instytutu Geologii i Geofizyki Chińskiej Akademii Nauk.
      Obecnie powszechnie przyjęta hipoteza mówi, że Księżyc powstał w wyniku kolizji Ziemi z obiektem wielkości Marsa. Do zderzenia doszło 4,5 miliarda lat temu, a w wyniku niezwykle wysokich temperatur, będących skutkiem zderzenia, Księżyc utracił wodę i inne związki lotne. Debata o tym, jak dużo wody pozostało na Księżycu, trwa od dekad. Dotychczas jednak dysponowaliśmy wyłącznie próbkami ze strony widocznej z Ziemi.
      Chińska misja Chang'e-6 została wystrzelona w maju 2024 roku, wylądowała w Basenie Południowym – Aitken i w czerwcu wróciła z niemal 2 kilogramami materiału. To pierwsze w historii próbki pobrane z niewidocznej części Księżyca.
      Zespół profesora Hu wykorzystał 5 gramów materiału, na który składało się 578 ziaren o rozmiarach od 0,1 do 1,5 milimetra. Po przesianiu i dokładnej analizie okazało się, że 28% z nich stanowi bazalt. I to on właśnie został poddany badaniom.
      Ilość wody w skałach księżycowych to bardzo ważny test hipotezy o pochodzeniu Księżyca. Jeśli w skałach byłoby 200 części wody na milion lub więcej, byłoby to poważne wyzwanie dla obecnie obowiązującej hipotezy i naukowcy musieliby zaproponować nowy model powstania Księżyca, wyjaśnia profesor Hu. Wyniki badań jego zespołu stanowią więc potwierdzenie tego, co obecnie wiemy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2024 roku średnia temperatura oceanów była najwyższa w historii pomiarów. Niezwykle ciepła woda występowała nie tylko na powierzchni, ale również na głębokości do 2000 metrów, donosi międzynarodowy zespół naukowy, na którego czele stał profesor Cheng Lijing z Instytutu Fizyki Atmosfery Chińskiej Akademii Nauk. W badaniach wzięło udział 54 naukowców z 7 krajów, którzy zastanawiali się również, jak cieplejszy ocean wpłynie w przyszłości na życie ludzi.
      Ocean jest kluczowym elementem klimatu. Przechowuje aż 90% nadmiarowego ciepła uwięzionego na Ziemi i pokrywa 70% powierzchni planety. Dlatego też w olbrzymiej mierze decyduje o wzorcach pogodowych i decyduje o klimacie oraz tempie jego zmian. Jeśli chcemy wiedzieć, co dzieje się z klimatem, odpowiedzi musimy szukać w oceanie, mówi współautor badań, profesor John Abraham z University of St. Thomas.
      Trzy międzynarodowe zespoły naukowe połączyły siły pod kierunkiem profesora Lijinga i stwierdziły, że rok 2024 był rekordowy pod względem temperatury oceanu. Pomiędzy rokiem 2023 a 2024 zawartość ciepła w górnej warstwie 2000 metrów wód oceanicznych wzrosła o 16 zettadżuli (16x1021 dżuli). To około 140 razy więcej energii niż produkcja elektryczna całej ludzkości w 2023 roku. W ciągu ostatnich pięciu lat, pomimo cykli La Niña i El Niño, zawartość ciepła w oceanie rosła w tempie 15–20 zettadżuli rocznie, dodaje profesor Michael Mann z University of Pennsylvania. Regionami o rekordowo wysokiej zawartości ciepła były Ocean Indyjski, tropikalne regiony Atlantyku, Morze Śródziemne, północne regiony Atlantyku, północne regiony Pacyfiku oraz Ocean Południowy.
      Rekordowo ciepła była też powierzchnia oceanu, miejsce styku wody z atmosferą. Temperatura powierzchni jest niezwykle istotna, gdyż to ona decyduje, jak szybko ciepło i wilgoć trafiają z oceanu do atmosfery, co ma gigantyczny wpływ na pogodę.
      Ocean wpływa na klimat głównie poprzez zmiany koncentracji pary wodnej w atmosferze, co prowadzi do pojawiania się katastrofalnych ekstremów w cyklu obiegu wody. Para wodna jest też silnym gazem cieplarnianym, a postępujące ocieplenie prowadzi do pustynnienia, zwiększenia ryzyka susz i pożarów. Jednocześnie jednak para wodna napędza wszelkiego rodzaju burze, co podnosi ryzyko powodzi. Dotyczy to również huraganów i tajfunów, wyjaśnia doktor Kevin Trenberth z amerykańskiego Narodowego Centrum Badań Atmosfery. W roku 2024 średni temperatura powierzchni wód oceanu była o 0,05–0,07 stopnia Celsjusza wyższa niż w roku 2023.
      W ubiegłym roku aż 104 kraje poinformowały o zarejestrowaniu na swoim terenie rekordowo wysokich temperatur. Zwiększyła się częstotliwość występowania ekstremalnych zjawisk pogodowych, takich jak susze, powodzie, fale upałów czy pożary. Doświadczyli ich mieszkańcy Afryki, Europy i Azji. Zjawiska takie wiążą się z olbrzymimi stratami. W samych tylko Stanach Zjednoczonych katastrofy naturalne spowodowane zmianami klimatu spowodowały od 1980 roku straty szacowane na 3 biliony dolarów.
      Naukowcy są bardzo zainteresowani tym, co dzieje się w oceanie, gdyż ilość uwięzionej w nim energii cieplnej to najlepszy wskaźnik zmian klimatu. Ocean to strażnik planety. To on pochłania znaczną część nadmiarowej energii gromadzącej się w ziemskim systemie klimatycznym w wyniku emisji antropogenicznych, dodaje doktor Karina von Schuckmann z Mercator Ocean International. Musimy pamiętać, że pojemność cieplna oceanu nie jest nieograniczona.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Woda z komety 67P/Czuriumow-Gierasimienko ma podobny stosunek deuteru i wodoru, co woda w ziemskich oceanach, poinformował międzynarodowy zespół naukowy, pracujący pod kierunkiem Kathleen E. Mandt z NASA. To zaś ponownie otwiera dyskusję na temat roli komet rodziny Jowisza w dostarczeniu wody na Ziemię. Uzyskane właśnie wyniki stoją w sprzeczności z wcześniejszymi badaniami, jednak naukowcy stwierdzili, że wcześniejsza interpretacja wyników badań wykonanych przez satelity została zafałszowana przez pył z komety.
      W gazie i pyle, z którego uformowała się Ziemia, mogło znajdować się nieco wody, jednak większość z niej została odparowana przez Słońce. Teraz, po 4,6 miliarda lat, Ziemia jest pełna wody, a naukowcy wciąż się nad jej pochodzeniem. Mamy silne dowody wskazujące na to, że została ona przyniesiona przez asteroidy. Jednak wciąż sporna pozostaje rola komet. W ciągu kilku ostatnich dekad badania komet jowiszowych – które zawierają materiał z wczesnych etapów istnienia Układu Słonecznego i powstały poza orbitą Saturna – wykazywały silny związek pomiędzy zawartą w nich wodą, a wodą na Ziemi.
      Związek ten wynikał z podobnego stosunek deuteru do wodoru. To właśnie na jego podstawie można stwierdzić, czy woda występująca na dwóch ciałach niebieskich jest podobna, czy też nie. Woda zawierająca więcej deuteru powstaje w środowisku zimnym, dalej od Słońca. Zatem ta na kometach jest mniej podobna do ziemskiej wody niż ta na asteroidach. Jednak prowadzone przez dekady badania pary wodnej z komet jowiszowych pokazywały podobieństwa do wody na Ziemi. Dlatego też naukowcy zaczęli postrzegać te komety jako ważne źródło wody na Ziemi.
      Jednak w 2014 roku przekonanie takie legło w gruzach. Wtedy to misja Rosetta, wysłana do 67P/Czuriumow-Gierasimienko przez Europejską Agencję Kosmiczną, dostarczyła unikatowych danych na temat komety. A analizujący je naukowcy zauważyli, że stosunek deuteru do wodoru jest na niej największy ze wszystkich zbadanych komet i trzykrotnie większy niż w wodzie ziemskiej. To było olbrzymie zaskoczenie, które skłoniło nas do przemyślenia wszystkiego, mówi Mandt.
      Pracujący pod jej kierunkiem zespół specjalistów z USA, Francji i Szwajcarii, w tym uczonych, którzy brali udział w misji Rosetta, jako pierwszy przeanalizował wszystkie 16 000 pomiarów wykonanych podczas europejskiej misji. Naukowcy chcieli zrozumieć, jakie procesy fizyczne powodują zmienność stosunku deuteru do wodoru w wodzie z komet. Badania laboratoryjne, obserwacje komet i analizy statystyczne wykazały, że pył z komet może wpływać na odczyty. Byłam ciekawa, czy znajdziemy dowody na to, że podobne zjawisko miało miejsce podczas badań 67P. I okazało się, że to jeden z tych rzadkich przypadków, gdy wysuwa się jakąś hipotezę i ona całkowicie się sprawdza, mówi Mandt.
      Naukowcy znaleźli wyraźny związek pomiędzy pomiarami ilości deuteru w warkoczu 67P a ilością pyłu wokół pojazdu Rosetta. To wskazywało, że część odczytów może nie być reprezentatywna dla składu komety.
      Gdy kometa zbliża się do Słońca, jej powierzchnia ogrzewa się i z powierzchni wydobywa się gaz oraz pył. Ziarna pyłu zawierają zamarzniętą wodę. Nowe badania sugerują, że woda zawierająca więcej deuteru łatwiej przylega do pyłu, niż woda jaką spotykamy na Ziemi. Gdy lód z takich ziaren pyłu jest uwalniany do warkocza komety, może powodować, że wygląda to tak, jakby woda z komety zawierała więcej deuteru niż w rzeczywistości.
      Rosetta krążyła w odległości 10–30 kilometrów od głowy komety. Mandt i jej zespół zauważyli, że do przeprowadzenia prawidłowych pomiarów składu wody z komety konieczne jest, by uwolnione do warkocza ziarna pyłu zdążyły wyschnąć. Pozbywają się one wody dopiero w odległości co najmniej 120 kilometrów od głowy komety.
      Odkrycie ma duże znaczenie nie tylko dla zrozumienia roli komet jako źródła wody na Ziemi,a le też do lepszego zrozumienia przyszłych i przeszłych badań. To świetna okazja by jeszcze raz przyjrzeć się obserwacjom z przeszłości i lepiej przygotować się do przyszłych badań, mówi Mandt.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...