Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W Układzie Słonecznym odkryto nowy system pierścieni. Znajdują się tam, gdzie być ich nie powinno

Rekomendowane odpowiedzi

Astronomowie odkryli nowy system pierścieni w Układzie Słonecznym. Otaczają one planetę karłowatą Quaoar i znajdują się znacznie dalej od jej powierzchni niż typowe systemy pierścieni, co każe jeszcze raz zastanowić się nad teoriami dotyczącymi formowania się tego typu struktur.

Quaoar to duża planetoida, o połowę mniejsza od Plutona, która znajduje się za Neptunem. Została odkryta w 2002 roku. Naukowcy, wykorzystując niezwykle czułą szybką kamerę HiPERCAM zamontowaną na największym na świecie teleskopie optycznym Gran Telescopio Canarias na La Palmie zauważyli, że obiekt ten posiada pierścienie. Są one zbyt małe i ciemne, by było widać je bezpośrednio na zdjęciu. Zaobserwowano je dzięki okultacji, kiedy to światło znajdującej się w tle gwiazdy zostało kilkukrotnie na krótko przesłonięte przez niewidoczne na zdjęciu obiekty.

Dotychczas znaliśmy zaledwie sześć systemów pierścieni w Układzie Słonecznym. Takie struktury istnieją wokół Saturna, Jowisza, Urana, Neptuna oraz dwóch planet karłowatych – Chariklo i Haumei. Wszystkie te systemy znajdują się na tyle blisko swojego ciała macierzystego, że siły pływowe uniemożliwiają akrecję materiału z pierścienia i utworzenie księżyców.

Pierścienie wokół Quaoara są wyjątkowe. Znajdują się bowiem w odległości większej niż siedmiokrotna średnica planetoidy. To zaś dwukrotnie dalej niż tzw. granica Roche'a. Granica ta to – w układzie dwóch ciał o znacznej różnicy mas – promień, po przekroczeniu którego ciało mniej masywne może się rozpaść pod wpływem sił pływowych ciała bardziej masywnego. Na przykład główne pierścienie Saturna znajdują się w odległości 3 promieni planety od jej powierzchni. W przypadku Quaoar mamy odległość 7-krotnie większą niż promień planetoidy, a mimo to pierścienie istnieją i nie dochodzi do akrecji materiału. To wskazuje na konieczność przemyślenia teorii dotyczącej formowania się pierścieni.

Odkrycie nieznanego systemu pierścieni było czymś niespodziewanym. A jeszcze bardziej niespodziewane było znalezienie pierścieni tak daleko od Quaoar, co rzuca wyzwanie naszemu dotychczasowemu rozumieniu formowania się pierścieni, mówi profesor Vik Dhillon z University of Sheffield.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Pierścienie Saturna są bardzo młode, znacznie młodsze niż sama planeta. Fizyk Sascha Kempf z University of Colorado w Boulder dostarczył najsilniejszych dowodów wskazujących, że pierścienie gazowego olbrzyma liczą nie więcej niż 400 milionów lat. Są więc o ponad 4 miliardy lat młodsze niż planeta, którą otaczają. Pierścienie zatem to króciutki epizod w historii planety. Tym bardziej, że z danych przekazanych przez sondę Cassini wynika, iż Saturn szybko niszczy swoje pierścienie.
      Pierścienie jako pierwszy zauważył Galileusz w 1610 roku. Nie wiedział jednak, czym są. Na jego rysunkach wyglądają nieco podobnie jak uszy dzbana. Dopiero w XIX wieku James Scott Maxwell stwierdził, że pierścienie nie są strukturą stałą, a zbudowaną z wielu indywidualnych części. Obecnie wiemy, że Saturn posiada 7 pierścieni zbudowanych z kawałków lody, a większość z nich jest mniejsza niż głazy na Ziemi. W sumie jednak lód ten ma taką masę jak połowa masy księżyca Mimas.
      Przez większość XX wieku astronomowie sądzili, że pierścienie powstały jednocześnie z planetą. Nie potrafili jednak wyjaśnić, dlaczego są one tak „czyste”. Obserwacje wskazywały bowiem, że w 98% zbudowane są z lodu. Było niemal niemożliwe, by materiał skalny stanowił tak niewielki odsetek pierścieni istniejących przez miliardy lat.
      Misja sondy Cassini, która przybyła w okolice Saturna w 2004 roku, stała się niepowtarzalną okazją do wyjaśnienia zagadki pierścieni. Sonda miała na pokładzie urządzenie o nazwie Cosmic Dust Analyzer, w który łapała kawałki międzyplanetarnego pyłu. W ciągu 13 lat złapała zaledwie 163 ziarna pyłu znajdującego się w sąsiedztwie Saturna. To jednak wystarczyło Kempfowi i jego kolegom. Na podstawie danych zebranych przez Cassini obliczyli oni, że każdego roku na lodowe pierścienie opada znacznie mniej niż 1 gram pyłu na stopę kwadratową powierzchni. To bardzo mało, ale gromadzi się on latami, więc stanowi coraz większy odsetek materiału pierścieni. Biorąc zaś pod uwagę wielkość pierścieni, stosunek pyłu do lodu oraz tempo opadania pyłu na pierścienie, naukowcy mogli wyliczyć maksymalny wiek pierścieni. Już wcześniej uważano, że pierścienie są bardzo młode, jednak nikt dotychczas nie dostarczył równie przekonujących dowodów.
      W najbliższych latach powinniśmy poznać kolejne tajemnice pierścieni Saturna. W przyszłym roku ma bowiem wystartować misja Europa Clipper, na pokładzie której znajdzie się znacznie bardziej zaawansowany analizator pyłu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy wykorzystali Teleskop Webba do zarejestrowania pierścieni Chariklo. To największy ze znanych nam centaurów, niewielkich ciał poruszających się po orbitach wokół Słońca pomiędzy orbitami Jowisza i Neptuna. Chariklo znajduje się za Saturnem, w odległości ok. 3,2 miliarda kilometrów od Ziemi. Ma 250 kilometrów średnicy, a w 2013 roku astronomowie korzystający z teleskopów naziemnych odkryli, że posiada system dwóch pierścieni.
      Naukowcy obserwowali wówczas, jak Chariklo przechodzi na tle jednej z gwiazd. Zjawisko takie, które rzadko możemy obserwować, zwane jest okultacją i jest wykorzystywane do określania właściwości fizycznych zakrywanych obiektów. Ku ich zdumieniu okazało się, że jasność gwiazdy dwukrotnie się zmniejszyła jeszcze zanim została ona zasłonięta przez Chariklo, a gdy asteroida odsłoniła gwiazdę, ponownie doszło do dwukrotnego „mrugnięcia" gwiazdy. To pokazało, że Chariklo posiada system dwóch pierścieni i są to pierwsze znane nam pierścienie w Układzie Słonecznym znajdujące się wokół tak małego obiektu. Obecnie wiemy, że znajdują się one w odległości około 400 kilometrów od centaura.
      Wśród astronomów, którzy zarezerwowali sobie czas obserwacyjny Teleskopu Webba jest Pablo Santos-Sanz z Instituto de Astrofísica de Andalucía. Postanowił on skorzystać z faktu, że Chariklo miał przejść na tle gwiazdy Gaia DR3 6873519665992128512. Wykorzystał więc Webba do obserwacji tego zjawiska.
      Dane z przejścia były dokładnie takie, jak się spodziewano. Webb zarejestrował okultację gwiazdy zarówno przez Chariklo jak i jego pierścienie. Zaś krótko po okultacji naukowcy jeszcze raz przyjrzeli się centaurowi za pomocą Webba, zbierając dane dotyczące światła słonecznego odbijanego przez Chariklo i jego pierścienie. W ten sposób teleskop udowodnił nie tylko swoje niezwykłe możliwości obserwacyjne, ale również dostarczył nam nowych danych.
      Kosmiczny instrument zarejestrował trzy pasma absorpcji zamrożonej wody. Badania za pomocą teleskopów naziemnych również sugerowały istnienie tego lodu, jednak Webb dostarczył pierwszych dowodów, że istnieje tam zamarznięta woda w postaci krystalicznej. Wysokoenergetyczne cząstki zmieniają lód z postaci krystalicznej do amorficznej. Odkrycie krystalicznego lodu w systemu Chariklo oznacza, że bez przerwy zachodzą tam mikrokolizje, które albo odsłaniają pierwotny materiał, albo inicjują proces krystalizacji, mówią autorzy badań.
      To jednak nie wszystko. Naukowcy mają nadzieję, że dzięki szczegółowej analizie danych z Webba będą w stanie dokładnie odróżnić od siebie oba pierścienie Chariklo, określić ich grubość, rozmiary oraz właściwości budujących go cząstek. Chcieliby się też dowiedzieć, jak to się stało, że tak mały obiekt posiada pierścienie i odkryć pierścienie wokół innych niewielkich obiektów. Olbrzymia czułość Webba w zakresie podczerwieni w połączeniu z możliwościami rejestrowania danych z okultacji oznaczają, że teleskop znakomicie zwiększyć naszą wiedzę o odległych niewielkich obiektach Układu Słonecznego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niedawne badania podważyły przekonanie, jakoby ziemskie kontynenty uformowały się wyłącznie w wyniku procesów zachodzących wewnątrz naszej planety. Teraz dowiadujemy się o odkryciu „rytmu produkcji” skorupy ziemskiej. Badania minerałów ujawniły, że co mniej więcej 200 milionów lat dochodzi do wzmożenia zmian zachodzących w skorupie ziemskiej, a okres ten jest zbieżny z przejściem Układu Słonecznego przez ramiona Drogi Mlecznej.
      Przed kilkoma tygodniami informowaliśmy, że zdaniem naukowców z australijskiego Curtin University ziemskie kontynentu uformowały się w wyniku gigantycznych uderzeń meteorytów. Teraz dowiadujemy się, że do zwiększonego bombardowania dochodzi co około 200 milionów lat. "Układ Słoneczny przemieszcza się pomiędzy spiralnymi ramionami Drogi Mlecznej co około 200 milionów lat. Badając wiek i sygnatury izotopowe minerałów z Kratonu Pilbara w Zachodniej Australii i Kratonu Północnoatlantyckiego na Grenlandii zauważyliśmy podobny rytm tworzenia się skorupy ziemskiej, który zbiega się z okresem, w jakim Układ Słoneczny przechodzi przez obszary o największym zagęszczeniu gwiazd", mówi profesor Chris Kirkland z Curtin University.
      Układ Słoneczny krąży wokół centrum Drogi Mlecznej. Okres obiegu wynosi około 230 milionów lat i nazywany jest rokiem galaktycznym. Łatwo więc wyliczyć, że gdy ostatni raz Słońce znajdowało się w tym samym miejscu galaktyki co obecnie, po Ziemi chodziły pierwsze dinozaury.
      Raz na jakiś czas – mniej więcej do 200 milionów lat – Układ Słoneczny trafia na bardziej gęste obszary galaktyki. Wtedy oddziaływanie grawitacyjne znajdujących się w pobliżu gwiazd może destabilizować Obłok Oorta i kierować znajdujące się tam planetoidy w stronę Słońca. A część z nich trafi w Ziemię.
      Obłok Oorta to hipotetyczna – bo jej istnienia wciąż nie udowodniono – pozostałość po formowaniu się Układu Słonecznego. Ma on składać się m.in. z pyłu i planetoid. Astronomowie sądzą, że wewnętrzne krawędzie Obłoku znajdują się w odległości od 2 do 5 tysięcy jednostek astronomicznych od Słońca, a krawędzie zewnętrzne położone są w odległości od 10 do 100 tysięcy j.a. Przypomnijmy, że 1 j.a. to średnia odległość pomiędzy Słońcem a Ziemią, a najdalej wysłany przez człowieka pojazd, sonda Voyager 1, znajduje się w odległości zaledwie 157,5 j.a. od Ziemi.
      Zwiększenie częstotliwości uderzeń komet w Ziemię mogło prowadzić do spotęgowania procesów topnienia powierzchni planety i zapoczątkować formowanie się kontynentów, mówi Kirkland. Powiązanie tworzenia się kontynentów, na których obecnie żyjemy, z podróżą Układu Słonecznego przez Drogę Mleczną rzuca całkowicie nowe światło na historię tworzenia się planety i jej miejsce w przestrzeni kosmicznej, dodaje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Symulacje komputerowe przeprowadzone przez astronomów z University of Oklahoma wskazują, gdzie poszukiwać dowodów na istnienie hipotetycznej Dziewiątej Planety. Pośrednie dowody na jej istnienie przedstawili przed 5 laty profesorowie Konstantin Batygin i Mike Brown z Caltechu (California Insitute of Technology). Od tamtej pory pojawiły się nowe dane i hipotezy na jej temat, a śladów Planety X – bo tak również bywa nazywana – szukano też w średniowiecznych manuskryptach. Pojawiła się nawet hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie Dziewiąta Planeta.
      Batygin i Brown wysunęli postulat o istnieniu Dziewiątej na podstawie badania niezwykłych orbit 6 najbardziej odległych obiektów Paas Kuipera. W ostatnich latach różne zespoły naukowe znajdowały kolejne obiekty transneptunowe (TNO) – czyli znajdujące się poza orbitą Neptuna – których nietypowe orbity można by wyjaśnić oddziaływaniem na nie Dziewiątej Planety. Batygin i Brown postulują, że Planeta X ma masę 10-krotnie większą od Ziemi, ma znajdować się bardzo daleko za Neptunem, a jej obieg wokół Słońca ma trwać 10-20 tysięcy lat. Zaobserwowanie takiego obiektu jest niezwykle trudne. Pamiętajmy, że planety nie świecą własnym światłem. Dlatego też od lat naukowcy próbują najpierw ustalić, w którym miejscu nieboskłonu należy poszukiwać Dziewiątej.
      Kalee Anderson i Nathan Kaib przedstawili na łamach arXiv swoją pracę, w ramach której modelowali ewolucję Układu Słonecznego. W modelu uwzględnili zarówno istnienie czterech olbrzymich planet (Jowisz, Saturn, Uran, Neptun), jak i milionów „cząstek” reprezentujących Pas Kuipera. Symulowali cztery miliardy lat ewolucji Układu Słonecznego. W części symulacji uwzględniali istnienie ośmiu znanych planet, a w części dodawali do tego systemu dziewiątą planetą z różnymi orbitami. W każdej z symulacji miliony „cząstek” odczuwały oddziaływanie planet, gdy Neptun migrował przez dysk. W końcu w wyniku tego procesu dysk został rozproszony i utworzył symulowany Pas Kupera, który możemy porównać z rzeczywiście obserwowanym Pasem, mówi Anderson.
      W modelach, w których uwzględniono istnienie Planety X, odległe obiekty Pasa Kuipera miały tendencję do gromadzenia się na orbitach o dość płytkim nachyleniu (inklinacji) w stosunku do płaszczyzny Układu Słonecznego. Obiekty takie znajdowały się w bardzo dużej odległości od Słońca, nigdy bliżej niż 40–50 jednostek astronomicznych. Jednak, co najważniejsze, w symulacjach uwzględniających tylko 8 znanych planet, nigdy nie dochodziło do nagromadzenia TNO na takich orbitach. To zaś wskazuje, że jeśli znajdziemy odległe TNO na orbitach o niewielkim nachyleniu względem płaszczyzny Układu Słonecznego, będzie to kolejna wskazówka, że Dziewiąta istnieje.
      To bardzo dobre badania, które pokazują, jak obserwacyjnie zweryfikować konsekwencje obecności wielkiej nieznanej planety, mówi Kat Volk z University of Arizona, która pracuje przy projekcie Outer Solar System Origins Survey (OSSOS).
      Uczona stwierdza, że już obecnie możemy poszukiwać TNO o orbitach opisanych przez Andersona i Kaiba, jednak nie jest to łatwe, gdyż obiekty takie są bardzo słabo widoczne. Przy dostępnej w tej chwili technologii musimy znaleźć równowagę pomiędzy tym, jak daleko wgłąb Układu Słonecznego możemy zajrzeć, a tym, jak szeroki obszar nieboskłonu jesteśmy w stanie objąć obserwacjami. Jednak w najbliższych latach nasze możliwości obserwacyjne radykalnie się powiększą dzięki budowanemu w Chile Vera C. Rubin Observatory, który rozpocznie pracę z 2023 roku.
      To będzie rewolucja, gdyż teleskop będzie w stanie wykryć TNO równie odległe co wyspecjalizowane projekty jak OSSOS, a jednocześnie będzie mógł obserwować wielkie obszary nieboskłonu. Sądzę, że teleskop ten pokaże nam wiele TNO, których istnienie postulują Anderson i Kaib.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowa sieć superautostrad w Układzie Słonecznym pozwoli na podróże znacznie szybciej niż dotychczas. Odkryte właśnie trasy umożliwiają kometom i asteroidom pokonanie odległości pomiędzy Jowiszem a Neptunem w czasie krótszym niż dekada i umożliwiają przebycie 100 jednostek astronomicznych szybciej niż w ciągu wieku. Trasy te mogą zostać użyte przez pojazdy kosmiczne do dość szybkiego dotarcia na skraj Układu Słonecznego. Ich odkrycie pozwoli też lepiej zrozumieć zagrożenia ze strony obiektów, które mogą zderzyć się z Ziemią.
      Artykuł The arches of chaos in the Solar System opublikowany na łamach Science Advances opisuje dokonane obserwacje struktury dynamicznej tych tras, które tworzą serię połączonych łuków wewnątrz tzw. rozmaitości przestrzennej, rozciągającej się od pasa asteroid poza Uran. Ta specyficzna autostrada pozwala obiektom znajdującym się w Układzie Słonecznym na pokonanie w ciągu dziesięcioleci trasy, której przebycie – z uwzględnieniem całej dynamiki Układu Słonecznego – zajmuje tysiące lub miliony lat.
      Najbardziej widoczne z tych łukowatych struktur są powiązane z Jowiszem i jego silnym wpływem grawitacyjnym. Cała populacja komet z rodziny Jowisza, których obieg jest krótszy niż 20 lat, oraz Centaury, są w olbrzymim stopniu kontrolowane przez rozmaitości przestrzenne. Niektóre z nich zderzają się z Jowiszem lub są wyrzucane poza Układ Słoneczny.
      Na ślad tych struktur naukowcy wpadli analizując orbity milionów obiektów w Układzie Słonecznym i sprawdzając, jak orbity te wpasowują się w już znane kosmiczne autostrady. Potrzebne są jeszcze kolejne badania, które pozwolą dokładnie określić, w jaki sposób możemy wykorzystać te autostrady do wysyłania pojazdów pozaziemskich oraz w jaki sposób rozmaitości przestrzenne zachowują się w pobliżu Ziemi. To z kolei może mieć znaczenie zarówno dla określenie ryzyka zderzeń Ziemi z asteroidami czy zachowania coraz większej liczby sztucznych obiektów znajdujących się w układzie Ziemia-Księżyc.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...