Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Po raz pierwszy udało się bezpośrednio zmierzyć stałą struktury subtelnej

Recommended Posts

Godzinę temu, peceed napisał:

I o tyle, że dostarcza nam informacji o Feynmanie a nie o fizyce.

Nie, o fizyce nie, o Feynmanie też nie. Raczej o mentalności matematyków modelujących fizykę.
 

Godzinę temu, peceed napisał:

Jest całkiem odwrotnie. Elektron jest opisywany na wiele sposobów w różnych teoriach strunowych. I wszystkie są dobre.

Ja nie szukam poprawnych modeli tylko rzeczywistych. To weźcie uruchomcie te swoje izomorfizmy i homomorfizmy czy co tam chcecie i wykażcie, że te inne model to tak naprawdę ten model, który zaobserwowano. Jak się nie da to sorry modele jednak nie są poprawne.  

Rozumiem, że tego co zarejestrowali w Lund to nikt tak nie opisał? 
 

Godzinę temu, peceed napisał:

Powinien kolega siąść na 4 literach i pouczyć się trochę fizyki. Wyszukiwanie obrazków nic nie da.

Stare chińskie przysłowie mówi coś innego ;). Przecież wizualizacja pomaga, zrozumieć równanie i  to co opisuje.  Ja fizykę umiem dopuszczająco, nie przemawia do mnie tylko matematyka, której wydaje się, że zajmuje się fizyką.
Wiadomo, że wizualizacja 13 wymiarów nie ma większego sensu, no ale modelowanie elektronu na 13 wymiarach też nie ;) - w sensie fizycznym. To jest ten sam poziom argumentacji.

Niech i sobie wszystkie modele elektronu będą poprawne w ramach jakiejś tam teorii co z tego? Skoro nie odzwierciedlają rzeczywistości. Obawiam się, że stoimy po dwóch stornach lustra ;) . 

 

Share this post


Link to post
Share on other sites
15 minut temu, l_smolinski napisał:

i wykażcie, że te inne model to tak naprawdę ten model, który zaobserwowano

Modeli się nie obserwuje. Obserwuje się wyniki eksperymentów które modele mają przewidzieć. Bez zrozumienia tego faktu może kolega zapomnieć o rozumieniu fizyki.

17 minut temu, l_smolinski napisał:

Przecież wizualizacja pomaga, zrozumieć równanie i  to co opisuje.

W przypadku kolegi przeszkadza. Bo zaczyna utożsamiać rzeczywistość z wizualizacjami.

 

Share this post


Link to post
Share on other sites
30 minut temu, peceed napisał:

Modeli się nie obserwuje. Obserwuje się wyniki eksperymentów które modele mają przewidzieć. Bez zrozumienia tego faktu może kolega zapomnieć o rozumieniu fizyki.

Pełna zgoda. Dlatego pytam, czy któryś model przewidział wynik tego eksperymentu? 
Bo ja wskazałem 2 takie modele, które to przewidziały i żaden nie pochodzi z QM czy Stringów. Co prawda nie idealnie, ale były blisko. Przynajmniej kierunek był dobry. 
Tak, naprawdę to tylko kwestia nomenklatury, jeżeli jakiś model wytworzył prawidłowy wynik, który pokrywa się z wynikiem eksperymentu oznacza to obserwację modelu a nie wyniku. No bo przecież analizuje się potem model, a nie sam wynik. Obserwujemy model oraz wynik. Potocznie nazywa się to genezą dla modelu.    
 

30 minut temu, peceed napisał:

W przypadku kolegi przeszkadza. Bo zaczyna utożsamiać rzeczywistość z wizualizacjami.

Nie wykluczam, też takiej opcji. 

Edited by l_smolinski

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji.
      Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee.
      Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory.
      To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych.
      Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badacze z Uniwersytetu w Tel Awiwie odkryli nowy sposób na przełączanie polaryzacji ultracienkich materiałów ferroelektrycznych. Nazwali swoją metodę „slidetroniką” – slidetronics – gdyż do przełączania dochodzi, gdy sąsiadujące warstwy atomów prześlizgują się w poprzek siebie. Slidetronika może być alternatywnym efektywnym sposobem kontrolowania miniaturowych urządzeń elektrycznych.
      Możłiwość przełączania polaryzacji elektrycznej na niewielkich obszarach to kluczowy element nowoczesnych technologii. Stosuje się ją m.in. w dyskach twardych. W ostatnich latach grubość indywidualnych domen o różnej polaryzacji udało się zmniejszyć ze 100 nanometrów do skali atomów. Jednak dalsza miniaturyzacja staje się poważnym problemem, gdyż może dochodzić do długodystansowych interakcji pomiędzy różnymi domenami, która powoduje, że polaryzacja indywidualnych domen zostaje ujednolicona. W miarę zmniejszania domen magnetycznych, efekty powierzchniowe zaczynają odgrywać coraz większą rolę.
      Specjaliści, by poradzić sobie z tym problemami, zaczęli rozglądać się za materiałami alternatywnymi dla krzemu, jak heksagonalny azotek boru (h-BN) czy dichalkogenki metali przejściowych (TMD). To materiały, których warstwy mogą mieć grubość atomu i jednocześnie posiadać uporządkowaną strukturę krystaliczną. Tworzy się je z nakładających się na siebie warstw utrzymywanych przez słabe oddziaływania van der Waalsa. Problem jednak w tym, że polaryzacja naturalnie uzyskiwanych jest ograniczona, gdyż materiały te mają tendencję do przyjmowania struktury centrosymetrycznej.
      Badacze pracujący pod kierunkiem Moshe Ben Shaloma przełamali tę niepożądaną symetrię kontrolując kąt ułożenia dwóch sąsiadujących warstw hBN. Ułożenie, które łamie symetrię i zachowuje polaryzację to jedno z pięciu możliwych ułożeń dwuwarstwowego h-BN. Podzieliliśmy to na dwie grupy: „równoległą” i „antyrównoległą”, mówi Ben Shalom. W ułożeniu optymalnie antyrównoległym (AA+) atomy azotu z jednej warstwy spoczywają na atomach boru z drugiej. W orientacji niestabilnie równoległej (AA) wszystkie atomu azotu z obu warstw spoczywają na sobie i warstwy się odpychają. Przesuwają się względem siebie do czasu, aż stworzą tylko połowa atomów nachodzi na siebie (konfiguracja AB).
      Okazało się, że takie przesunięcie warstw (AB) względem siebie pozwala na lokalne przełączanie polaryzacji. Naukowcy stwierdzili, że taka stabilna polaryzacja może być niezwykle użyteczna w dalszej miniaturyzacji nieulotnych układów pomięci. Elektrony mogą się wydajnie tunelować pomiędzy obiema warstwami i mechanizm ten można wykorzystać do szybkiego odczytu i zapisu polaryzacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Najbardziej precyzyjny z dotychczasowych pomiarów wartości stałej struktury subtelnej zarysowuje nowe granice dla teorii mówiących o istnieniu ciemnej materii czy ciemnej energii. Nowa wartość to nie tylko dodatkowy test Modelu Standardowego, ale i wskazówka, gdzie należy poszukiwać ciemnej materii, która wraz z ciemną energią stanowi ponad 90% masy wszechświata.
      Stała struktury subtelnej to kombinacja trzech stałych fundamentalnych, stałej Plancka, ładunku elektronu oraz prędkości światła. Łącznie określają one siłę oddziaływań elektromagnetycznych, przez co stała struktury subtelnej powszechnie występuje we wszechświecie. Jako, że jest to wielkość bezwymiarowa, niezależna od systemu jednostek, jest w pewnym sensie bardziej podstawowa niż inne stałe fizyczne, których wartość zmienia się w zależności od systemu.
      Niewielka wartość stałej struktury subtelnej, wynosząca około 1/137 wskazuje, że oddziaływania elektromagnetyczne są słabe. To zaś oznacza, że elektrony znajdujące się na orbitach w pewnej odległości od jądra atomu mogą tworzyć wiązania i budować molekuły. To właśnie ta ich właściwość umożliwiła powstanie gwiazd czy planet. Wielu fizyków twierdzi, że takiej a nie innej wartości stałej struktury subtelnej zawdzięczamy własne istnienie. Gdyby bowiem była ona nieco większa lub nieco mniejsza, gwiazdy nie mogłyby syntetyzować cięższych pierwiastków, takich jak np. węgiel. Życie w znanej nam postaci by więc nie istniało.
      Dotychczasowe pomiary stałej struktury subtelnej umożliwiły prowadzenie precyzyjnych testów zależności pomiędzy cząstkami elementarnymi. Zależności te są opisane równaniami, tworzącymi Model Standardowy. Każda niezgodność pomiędzy przewidywaniami Modelu a obserwacjami może wskazywać na istnienie nieznanych zjawisk fizycznych.
      Zwykle stałą struktury subtelnej mierzy się określając siłę odrzutu atomów absorbujących fotony. Energia kinetyczna tego odrzutu pozwala określić masę atomu. Następnie, na podstawie precyzyjnej znajomości stosunku masy atomu do elektronu, obliczamy masę elektronu. W końcu możemy określić stałą struktury subtelnej z masy elektronu oraz siły wiązań atomowych w wodorze.
      Naukowcy pracujący pod kierunkiem profesor Saidy Guellati-Khelifa z Laboratoire Kastler-Brossel schłodzili atomy rubidu do temperatury kilku stopni powyżej zera absolutnego. Następnie za pomocą lasera stworzyli superpozycję dwóch stanów atomowych. Pierwszy ze stanów odpowiadał atomom odrzucanym w wyniku zaabsorbowania fotonów, drugi zaś, atomom, które nie doświadczają odrzutu. Atomy w różnych stanach różnie propagowały się wewnątrz komory próżniowej. Naukowcy dodali wówczas drugi zestaw impulsów laserowych, który doprowadził do „ponownego połączenia” obu części superpozycji.
      Im większy był odrzut atomu absorbującego fotony, tym większe przesunięcie fazy względem jego własnej wersji, która nie doświadczała odrzutu. Uczeni wykorzystali tę różnicę do określenia masy atomu, z której następnie wyliczyli stałą struktury subtelnej. W ten sposób określili jej wartość na 1/137,035999206(11). Precyzja pomiaru wynosi 81 części na bilion, jest więc 2,5-krotnie większa niż poprzedni najbardziej precyzyjny pomiar wykonany w 2018 roku na Uniwersytecie Kalifornijskim w Berkeley.
      Różnica pomiędzy pomiarem obecnym, a tym z Berkeley rozpoczyna się na 7. cyfrze po przecinku. To zaskoczyło francuskich naukowców, gdyż wskazuje, że albo jedne z pomiarów, albo oba, zawierają nieznany błąd. Autor pomiaru z Berkeley, Holger Müller, komentuje, że wynik uzyskany przez Francuzów potwierdza, iż elektron nie posiada mniejszych struktur i rzeczywiście jest cząstką elementarną.
      Francuzi planują teraz potwierdzić wyniki swoich pomiarów korzystając z innego izotopu rubidu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy z Australii i Wielkiej Brytanii poinformowali, że znaleźli dowody na to, iż prawa fizyki są różne w różnych częściach wszechświata. Do takiego wniosku doszedł zespół pracujący pod kierunkiem Johna Webba z Uniwersytetu Nowej Południowej Walii.
      Naukowcy badali stałą struktury subtelnej, która jest podstawową stałą fizyczną. Opisuje ona siłę oddziaływań elektromagnetycznych i oznaczana jest jako α. Okazuje się, że wielkość ta wcale nie jest stała.
      Uczeni wykorzystali teleskop VLT w Chile oraz teleskop Kecka z Hawajów. Za ich pomocą sprawdzili, w jaki sposób światło z 300 galaktyk położonych w odległości 12 miliardów lat świetlnych jest absorbowane  przez atomy pyłu międzygwiezdnego.
      Jako że oba teleskopy znajdują się na różnych półkulach Ziemi, muszą być zwrócone w różnych kierunkach.
      Porównanie danych z urządzeń wykazało znaczne różnice. Gdy za pomocą teleskopu Kecka patrzymy na północ, to α odległych galaktyk jest średnio mniejsza. Gdy patrzymy na te galaktyki na południe za pomocą VLT - α jest większa - mówi Julian King z University of New South Wales. Różnica jest niewielka, rzędu 1/100 000, ale naukowcy nie wykluczają, że poza horyzontem, który jesteśmy w stanie obserwować, może być ona znacznie większa.
      Profesor Webb mówi, że istnieje oś, wzdłuż której alfa ulega zmianie. Sam fakt, że stała struktury subtelnej okazała się zmienną, świadczy o tym, że prawa pozwalające na istnienie życia na Ziemie nie muszą dopuszczać jego pojawienia się w innych obszarach kosmosu. Tam życie może powstawać według całkowicie innych zasad.
      Astrofizyk Scott Croom, który nie był zaangażowany w opisywane badania, doradza ostrożność. Mówi, że twierdzenia jego kolegów są rewolucyjne i jeśli się potwierdzą będzie to "fantastyczna rzecz", jednak konieczne są mocne dowody na poparcie ich słów. Przypomina, że podczas tego typu obserwacji łatwo o błędy i już w przeszłości okazywało się, że wiele z obiecujących odkryć okazało się niewypałami, gdyż uzyskane dane zostały zafałszowane przez nieznane wcześniej błędy.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...