Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Szybkie ładowanie elektryków możliwe dzięki folii z niklu

Recommended Posts

Dodanie cienkiej warstwy niklu do akumulatorów znakomicie skraca czas ładowania, informują naukowcy z Pennsylvania State University. Specjaliści uważają, że jeśli na rynek trafiłyby akumulatory, które są lżejsze i można je znacznie szybciej ładować, klienci chętniej kupowaliby samochody elektryczne, a to z kolei doprowadziłoby do spadku ich ceny i pojawienia się kolejnych chętnych do ich zakupu.

Uczeni eksperymentowali z litowo-jonowym akumulatorem, który na pojedynczym ładowaniu pozwalał na przejechanie do 560 kilometrów. Gęstość energii takiego urządzenia wynosiła 256 watogodzin na kilogram. Dzięki dodaniu folii z niklu akumulator można było w ciągu zaledwie 11 minut załadować w 70%, co pozwoliło na przejechanie 400 kilometrów, a po 12 minutach był on załadowany w 75%, dzięki czemu można było przejechać 440 km.

Nasza technologia pozwala na budowę mniejszych, szybciej ładujących się akumulatorów. Jeśli mamy samochód z akumulatorami pozwalającymi na przejechanie 320 kilometrów na pojedynczym ładowaniu, możemy podjechać na stację, podłączyć samochód, pójść do toalety, a po 10 minutach nasz pojazd jest gotowy do przejechania kolejnych 320 km. W ten sposób problem zasięgu znika, mówi jeden z autorów badań, inżynier Chao-Yang Wang.

Jednym z najpoważniejszych wyzwań stojących przed inżynierami specjalizującymi się w projektowaniu i budowie akumulatorów litowo-jonowych jest utrzymanie ich odpowiedniej temperatury. Najlepiej sprawują się one, gdy są dość ciepłe, ale nie za ciepłe. W akumulatorach stosuje się więc systemy chłodzenia i ogrzewania, które jednak zużywają sporo energii i nie działają zbyt szybko.

Uczeni z Pennsylvanii od lat eksperymentują z folią, która miałaby pomóc ogrzać akumulator do odpowiedniej temperatury.
Podczas swoich najnowszych eksperymentów byli w stanie ładować akumulator od około 70% pojemności w około 10 minut. Gdy stosowali szybkie ładowanie do 75% pojemności, urządzenie wytrzymało ponad 900 cykli ładowania/rozładowywania, co pozwalało na przejechanie na nim w sumie 402 000 kilometrów. Gdy zaś stosowali szybkie ładowanie do 70% pojemności, akumulator wytrzymywał około 2000 cykli ładowania, co pozwalało na przejechanie około 804 000 kilometrów.

Wang zwraca uwagę, że obecnie stosowane akumulatory po 10 minutach ładowania napełniają się do około 25% pojemności. Urządzenia, nad którymi pracują na Pennsylvania State University ładują się w tym czasie do 75% pojemności. To zaś oznacza, że w samochodach można by stosować mniej akumulatorów, zatem byłyby one tańsze, a zasięg na pojedynczym szybkim ładowaniu byłby nie tylko większy, ale i satysfakcjonujący dla kierowcy. Wang zapowiada, że w przyszłości chce opracować akumulator, który będzie można załadować do 80% pojemności w ciągu 5 minut. To zaś będzie oznaczało, że pod względem tempa ładowania i zasięgu samochody elektryczne dorównają pojazdom spalinowym.

Ze szczegółami badań można zapoznać się na łamach Nature.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Rosnąca popularność samochodów elektrycznych (EV) często postrzegana jako problem dla sieci elektroenergetycznych, które nie są dostosowane do nowego masowego źródła obciążenia. Naukowcy z Uniwersytetu w Lejdzie oraz amerykańskiego Narodowego Laboratorium Energii Odnawialnej podeszli do zagadnienia z innej strony. Z analizy wynika, że w ciągu najbliższych lat EV mogą stać się wielkim magazynem energii ze źródeł odnawialnych, stabilizując energetykę słoneczną i wiatrową.
      Energia z wiatru i słońca to najszybciej rosnące źródła energii. So to jednak źródła niestabilne, nie dostarczają energii gdy wiatr nie wieje, a słońce nie świeci. Z analizy, opublikowanej na łamach Nature Communications, dowiadujemy się, że rolę stabilizatora mogą odegrać samochody elektryczne. Obecnie większość ich właścicieli ładuje samochody w nocy. Autorzy badań uważają, że właściciele takich pojazdów mogliby podpisywać odpowiednie umowy z dostawcami energii. Na jej podstawie dostawca energii sprawowałby kontrolę nad ładowaniem samochodu w taki sposób, by z jednej strony zapewnić w sieci odpowiednią ilość energii, a z drugiej – załadować akumulatory do pełna. Właściciel samochodu otrzymywałby pieniądze za wykorzystanie jego pojazdu w taki sposób, wyjaśnia główny autor badań, Chengjian Xu.
      Co więcej, gdy pojemność akumulatorów zmniejsza się do 70–80 procent pojemności początkowej, zwykle nie nadają się one do zastosowań w transporcie. Jednak nadal przez wiele lat mogą posłużyć do stabilizowania sieci elektroenergetycznych. Dlatego też, jeśli kwestia taka zostanie uregulowana odpowiednimi przepisami, akumulatory takie mogłyby jeszcze długo służyć jako magazyny energii.
      Z wyliczeń holendersko-amerykańskiego zespołu wynika, że do roku 2050 samochody elektryczne oraz zużyte akumulatory mogą stanowić wielki bank energii o pojemności od 32 do 62 TWh. Tymczasem światowe zapotrzebowanie na krótkoterminowe przechowywanie energii będzie wówczas wynosiło od 3,4 do 19,2 TWh. Przeprowadzone analizy wykazały, że wystarczy, by od 12 do 43 procent właścicieli samochodów elektrycznych podpisało odpowiednie umowy z dostawcami energii, a świat zyska wystarczające możliwości przechowywania energii. Jeśli zaś udałoby się wykorzystać w roli magazynu energii połowę zużytych akumulatorów, to wystarczy, by mniej niż 10% kierowców podpisało umowy z dostawcami energii.
      Już w roku 2030 w wielu regionach świata EV i zużyte akumulatory mogą zaspokoić popyt na krótkoterminowe przechowywanie energii.
      Oczywiście wiele tutaj zależy od uregulowań prawnych oraz od tempa popularyzacji samochodów elektrycznych w różnych regionach świata. Autorzy badań zauważają też, że wielką niewiadomą jest tempo degradacji akumulatorów przyszłości, które będzie zależało m.in. od postępu technologicznego, czy też tempo rozwoju systemów zarządzania energią. Nie wiadomo także, czy nie zajdą radykalne zmiany w samym systemie transportowym. Nie można wykluczyć np. zmiany przyzwyczajeń i rozpowszechnienia się komunikacji zbiorowej czy systemów wspólnego użytkowania pojazdów, na dostępność samochodów i akumulatorów może też wpłynąć rozpowszechnienie się pojazdów autonomicznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Wydziału Chemicznego Politechniki Warszawskiej opracowali nowy elektrolit, który wydłuża żywotność akumulatorów litowo-jonowych. Już został on zastosowany w smartfonach i samochodach elektrycznych.
      Nowy związek, sól LiTDi, jest produkowany na licencji PW przez francuski koncern chemiczny Arkema. Jako pierwsi w Europie opracowaliśmy nowy elektrolit, w dodatku z użyciem mniej toksycznego materiału. Przy użyciu tego materiału ogniwo wolniej się starzeje i jest dużo bardziej odporne na czynniki zewnętrzne. To drugi w historii baterii taki związek. W stosunku do stosowanego przez ostatnie 30 lat posiada podobne parametry elektryczne, ale dużo lepszą odporność temperaturową i chemiczną, mówi doktor habilitowany Leszek Niedzicki.
      Nowy elektrolit aż trzykrotnie wydłuża żywotność akumulatora. A to oznacza, że dzięki niemu akumulatory w samochodach elektrycznych wytrzymają przez cały okres eksploatacji pojazdu i nie będzie trzeba ich wymieniać. Nowy elektrolit pozwala na bezproblemowe działanie akumulatora w temperaturach sięgających 90 stopni Celsjusza. Dzięki temu znika wiele ograniczeń, a akumulatorów w samochodach elektrycznych nie trzeba będzie tak intensywnie chłodzić. To zaś zmniejsza zapotrzebowanie samego samochodu na energię, zatem pozwala na zwiększenie jego zasięgu, szczególnie w upalne dni.
      Uczeni z PW nie powiedzieli jeszcze ostatniego słowa. Pracują nad innymi komponentami akumulatorów, szczególnie przywiązując uwagę do opracowania stałego elektrolitu dla samochodów elektrycznych. Taki elektrolit nie może się zapalić, co zwiększa bezpieczeństwo pojazdu, który legnie poważnemu wypadkowi. Pracują też nad elektrolitami pozbawionymi fluoru. Fluor jest obecnie obecny w każdym elektrolicie, a jest to pierwiastek bardzo toksyczny w razie pożaru. Uczeni z Warszawy już mają na swoim koncie pierwsze sukcesy. Nasz wynalazek działa – nikomu dotąd się to jeszcze nie udało. Jesteśmy pierwsi, którym się to udało w skali laboratoryjnej. Dotąd uważano, że elektrolit bez fluoru nie jest możliwy. Pracuję nad tym z moimi doktorantami, m.in. mgr inż. Klaudią Rogalą i mgr. inż. Markiem Broszkiewiczem, mówi doktor Niedzicki.
      Obecnie naukowcy starają się przeskalować swój wynalazek i stworzyć działające prototypowe akumulatory. Miałyby one nie zawierać fluoru i innych toksycznych oraz trudno dostępnych pierwiastków. Takie urządzenia byłyby tańsze w produkcji, bezpieczniejsze dla środowiska i łatwiejsze w recyklingu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Litowo-jonowe akumulatory wykorzystywane w samochodach elektrycznych to poważny problem środowiskowy i wizerunkowy. Ich recykling z pewnością poprawiłby zarówno wizerunek, jak i obciążenie dla środowiska. O ile jednak zaczyna rozwijać się cały przemysł recyklingu akumulatorów, to bardzo trudno jest namówić producentów samochodów, by chcieli korzystać z materiałów pochodzących z recyklingu.
      Ludzie uważają, że materiał z recyklingu nie jest równie dobry, jak oryginalny. Producenci akumulatorów mają wątpliwości odnośnie wykorzystywania odzyskiwanych materiałów, mówi profesor Yan Wang z Worcester Polytechnic Institute. Tymczasem badania przeprowadzone przez Wanga we współpracy ze specjalistami z US Advanced Battery Consortium (USABC) i firmy A123 Systems wykazały, że takie obawy są bezpodstawne. Katody z recyklingu są równie dobre, a nawet lepsze niż katody wykonane z dziewiczych materiałów.
      Specjaliści przeanalizowali akumulatory z pochodzącymi z recyklingu katodami NMC111. To najpowszechniej występujący typ katod, zbudowanych z manganu, kobaltu i niklu. Recykling wykonano za pomocą technologii opracowanej przez Wanga, którą uczony próbuje obecnie skomercjalizować.
      Okazało się, że katoda z materiału po recyklingu posiada więcej mikroskopijnych porów niż z dziewiczego materiału. W efekcie akumulatory z taką katodą mają podobną gęstość energetyczną, ale mogą pracować o 53% dłużej.
      Testów nie prowadzono co prawda w samochodach, ale na przemysłowych stanowiskach testowych. Na ich potrzeby wykonano odpowiadające standardom przemysłowym ogniwa o pojemności 11 Ah. Za testy odpowiedzialni byli inżynierowie z A123 Systems, a przeprowadzano je według standardów USABC dla hybryd plug-in. Wykazały one, że katody z recyklingu świetnie się sprawują. A to katody, jak mówi Wang, są najcenniejszym elementem akumulatorów. Dlatego też uczony zainteresował się właśnie ich odzyskiwaniem, gdyż to one mogą przynieść firmom zajmującym się recyklingiem największe zyski, a tym samym stać się impulsem do powszechniejszego recyklingu akumulatorów samochodowych.
      Założona przez Wanga firma Battery Resources planuje otwarcie pierwszego zakładu, który 2 2022 roku przetworzy 10 000 ton akumulatorów. Wangowi udało się też zdobyć finansowanie w wysokości 70 milionów USD, za które chce wybudowac dwa kolejne zakłady, tym razem na terenie Europy. Mają one powstać do końca przyszłego roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W najbliższych latach spodziewany jest lawinowy wzrost liczby miniaturowych urządzeń transmitujących dane. Rozwija się Internet-of-Things (IoT), więc tego typu urządzenia będą wykorzystywane np. w logistyce. Wszystkie one potrzebują źródła zasilania. Jednak baterie czy akumulatory wywierają negatywny wpływ na środowisko. Badacze z Empa (Szwajcarskie Federalne Laboratoria Nauk Materiałowych i Technologii) poinformowali o stworzeniu biodegradowalnego superkondensatora.
      Urządzenie zbudowane jest z węgla, celulozy, gliceryny i soli stołowej. To składniki tuszu dla drukarki 3D, w której wyprodukowano nowatorskie kondensatory. Składa się on z celulozowych nanowółkien i nanokryształów, węgla w postaci sadzy, grafitu i węgla aktywnego. Formę płynną nadaje gliceryna, woda i dwa rodzaje alkoholu. Do tego dochodzi nieco soli zapewniającej przewodnictwo.
      Superkondensator składa się z czterech warstw nakładanych jedna po drugiej przez drukarkę. Warstwy te to elastyczna podstawa, warstwa przewodząca, elektroda i elektrolit. Całość jest następnie składana na podobieństwo kanapki z elektrolitem wewnątrz. Powstaje w ten sposób całkowicie biodegradowalny kondensator, który może przechowywać energię elektryczną całymi godzinami, a jego wersja prototypowa jest zdolna do zasilania niewielkiego zegara cyfrowego. Kondensator wytrzymuje tysiące cykli ładowania/rozładowywania, może pracować przez wiele lat, działa w temperaturach ujemnych, jest odporny na nacisk i wstrząsy.
      Kondensator, gdy już go nie będziemy potrzebowali, można wyrzucić. Rozkłada się w ciągu 2 miesięcy, a jedyne, co możemy po tym czasie zobaczyć, to nieco fragmentów węgla. Wydaje się to proste, ale takie nie było, mówi Xavier Aeby z Empa. Stworzenie urządzenia o odpowiednich parametrach wymagało wielu prób i testów. Konieczne było bowiem stworzenie tuszu o parametrach nadających się do użycia w drukarce, z którego powstanie kondensator gotowy do wykorzystania w praktyce.
      Aeby studiował inżynierię mikroelektroniki na Szwajcarskim Federalnym Instytucie Technologii w Lozannie, a w Empa pisze doktorat. Jego opiekunem jest Gustav Nyström, którego grupa badawcza już od pewnego czasu prowadzi prace nad żelami bazującymi na nanoceluluzie, biodegradowalnym materiale o potencjalnie licznych zastosowaniach. Od bardzo dawna interesuje mnie biodegradowalny system przechowywania energii. Poprosiliśmy Empa o sfinansowanie naszego projektu, Printed Paper Batteries, i właśnie osiągnęliśmy pierwszy z naszych celów, mówi Nyström.
      Szwajcarski superkondensator może już wkrótce stać się kluczowym komponentem IoT. W przyszłości takie kondensatory można będzie szybko ładować wykorzystując np. pole elektromagnetyczne. Po naładowaniu będą one zasilały czujniki czy mikroprzekaźniki, mówią badacze. Metoda taka może być wykorzystywana np. do sprawdzania zawartości opakowań w transporcie. Biodegradowalne systemy przechowywania energii przydałyby się też w czujnikach monitorujących środowisko czy pracujących na rzecz rolnictwa. Tego typu akumulatorów nie trzeba by było zbierać, gdyż szybko uległyby rozkładowi bez szkody dla środowiska naturalnego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Żyjemy w nowoczesnym świecie pełnym urządzeń zasilanych energią elektryczną. Rozwój nowych technologii sprawia, że telefony komórkowe, laptopy, tablety i wiele innych sprzętów mobilnych towarzyszy nam na każdym kroku. Najczęściej stosowane do zasilania urządzeń mobilnych są baterie litowo-jonowe tzw. Li-ion, jednak ze względu na ich powolne ładowanie, krótki czas pracy oraz szkodliwość dla środowiska naturalnego (ze względu na wysoką zawartość metali ciężkich m.in. kobalt) coraz większą uwagę poświęca się superkondensatorem. To urządzenia łączące cechy baterii oraz kondensatorów. Co się z tym wiąże? Dłuższa żywotność, prostszy recykling, a przede wszystkim szybsze ładowanie, czyli oszczędność czasu. Wszak, czas to pieniądz.
      Zalety superkondensatorów tkwią w ich konstrukcji, na którą składają się dwa podstawowe elementy. Pierwszy z nich to układ dwóch wysokoporowatych elektrod, które odseparowane są od siebie także porowatym materiałem chroniącym przed zwarciem. Najczęściej ta część superkondensatora jest wykonana na bazie węgla aktywnego, który jest stosowany w tych urządzeniach nie bez powodu. W jego porach umieszczany jest drugi, kluczowy składnik superkondensatora – elektrolit zawierający jony, czyli atomy obdarzone ładunkiem elektrycznym (dodatnio naładowane – kationy oraz ujemnie naładowane – aniony). Jony mogą przemieszczać się we wnętrzu porowatego materiału w zależności od przyłożonego między elektrodami napięcia. Co ciekawe, im więcej porów we wnętrzu elektrod, tym więcej energii może być zgromadzone w urządzeniu. Pomijając elementy takie jak obudowa itp., można powiedzieć, że to wszystko.
      Co jednak czyni superkondensatory tak obiecującymi urządzeniami do magazynowania energii? Są to wcześniej wspomniane pory, a także sposób w jaki poruszają się jony. Średnica i długość kanałów we wnętrzu porowatych elektrod ma kluczowe znaczenie. Gdy pory są szerokie, urządzenie ładuje się szybko, ale dostarcza niewiele energii, podczas gdy zmniejszenie ich średnicy pozwala na dostarczenie większej ilości energii, jednak urządzenie ładuje się o wiele wolniej. Czy istnieje zatem sposób na przyspieszenie jonów w wąskich porach? O tym w listopadowym numerze czasopisma naukowego Nature Communications pisze Svyatoslav Kondrat - naukowiec z Instytutu Chemii Fizycznej, Polskiej Akademii Nauk (IChF PAN).
      Autorzy badań wykorzystali materiał porowaty na bazie węgla o średnicy porów poniżej jednego nanometra, przy czym należy pamiętać, że 1 nm to jedna miliardowa część metra. Pory te są zatem tak małe, że nie są widoczne dla ludzkiego oka. Materiał ten został nasączony cieczą jonową, która jest niczym innym jak solą w stanie ciekłym, przy czym nie zawiera żadnego rozpuszczalnika np. wody. Zatem ciecz jonowa to upłynniona sól. Jony z cieczy jonowej wypełniają pory, a po przyłożeniu napięcia pomiędzy elektrodami zaczynają się poruszać. Co się jednak stanie, gdy polaryzacja trwa dłuższą chwilę? Czy wszystkie jony poruszają się w równym tempie? Niestety, jony we wnętrzu elektrod zachowają się niczym samochody we wnętrzu tunelu poruszające się w przeciwnych kierunkach. Na dodatek, każdy z nich porusza się na jednym pasie, a nie jak na autostradzie - na kilku. Jeśli choćby jeden samochód utknie, pozostałe zaczynają lawinowo hamować. Zatem, przepustowość tunelu spada i powstaje korek. Tak samo dzieje się z porami, które zostają miejscami zatkane w superkondensatorze. To przekłada się na spadek sprawności pracy urządzenia, w szczególności obniża czas jego ładowania.
      Jak tego uniknąć? Svyatoslav Kondrat we współpracy z międzynarodowym zespołem przetestowali przykładanie napięcia w superkondensatorze pulsami, aby stopniowo wprawiać jony w ruch i nie zatykać porów. Jak się okazało, był to strzał w dziesiątkę. Metoda zaproponowana przez naukowców przyspiesza proces ładowania urządzenia i daje obiecujące wyniki. Dodatkowo przeprowadzając badania dla procesu rozładowania naukowcy Ci wykazali, że proces ten również można przyspieszyć. Przeprowadzone eksperymenty pokrywają się z wykonanymi przed naukowców licznymi symulacjami komputerowymi. Wyniki naszych badań są obiecujące. To ciekawe, że można przyspieszać nie tylko proces ładowania superkondensatora, ale także jego rozładowanie. Dzięki temu możemy usprawnić różne procesy technologiczne, np. przyspieszyć i zwiększyć wydajność odsalania wody – twierdzi Svyatoslav Kondrat.
      Rozwiązanie zaproponowane przez badaczy otwiera nowe możliwości oraz przybliża nas do ulepszenia istniejących już rozwiązań stosowanych do zasilania urządzeń mobilnych. Choć kondensatory znane są od dekad, to dopiero superkondensatory wychodzą naprzeciw oczekiwaniom konsumentów na miarę czasów, w których żyjemy. Dzięki takim odkryciom jesteśmy bliżej opracowania szybszych i wydajniejszych urządzeń do magazynowania energii, a to dopiero początek rewolucji w tej dziedzinie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...