Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

NASA pokazuje pierwsze zdjęcia Marsa wykonane przez Teleskop Webba

Recommended Posts

Teleskop Webba dostarczył pierwsze zdjęcia Marsa. Naukowcy zyskali dodatkowe dane, które uzupełniają to, co wiedzieliśmy o Czerwonej Planecie dzięki badaniom prowadzonym dotychczas za pomocą innych teleskopów, łazików i orbiterów. Ze swojego stanowiska obserwacyjnego, punktu libracyjnego L2, Webb może obserwować i szczegółowo rejestrować spektrum światła takich zjawisk jak burze pyłowe, zmiany pogody czy pór roku.

Mars, ze względu na swoją niewielką odległość, jest jednym z najjaśniejszych obiektów na niebie, zarówno w zakresie światła widzialnego, jak i podczerwieni. To dla Webba poważny problem. Teleskop został zbudowany z myślą o obserwowaniu najdalszych, niezwykle słabo świecących obiektów. Blask Marsa może oślepiać Webba, prowadząc do nasycenia detektorów podczerwieni. Dlatego też na potrzeby obserwacji Czerwonej Planety opracowano technikę, w ramach której używa się bardzo krótkich czasów ekspozycji i dokonuje pomiarów tylko części światła docierającego do czujników Webba. To wszystko wspomagany jest specjalnymi metodami analizy danych.

Pierwsze zdjęcia Marsa przysłane przez Webba pokazują fragment wschodniej półkuli planety. Sfotografowany on został przez instrument NIRcam w dwóch zakresach długości fali 2,1 µm i 4,3 µm. Na fotografii 2,1 µm dominuje odbite światło słoneczne, dlatego jest ono podobne do fotografii wykonanych w zakresie widzialnym przez Mars Orbitera. Z kolei fotografia w zakresie 4,3 µm powstała dzięki ciepłu emitowanemu przez planetę. Odpowiada ono temperaturze powierzchni i atmosfery.

Najjaśniejsze miejsca to te, na które promienie słoneczne padają pod największym kątem. Jasność spada w kierunku biegunów, widać też, że półkula północna, na której panuje właśnie zima, jest chłodniejsza. Na zdjęcie 4,3 µm wpływa też pochłaniający ten zakres fal dwutlenek węgla w atmosferze. Widać to np. w Basenie Hellas, najlepiej zachowanej strukturze uderzeniowej na Marsie. Jest on ciemniejszy właśnie ze względu na CO2. Basen położony jest niżej, panuje w nim wyższe ciśnienie, które prowadzi do pojawienia się zjawiska pochłaniania promieniowania w zakresie 4,1–4,4 µm. Analiza światła rejestrowanego przez Webba pozwala więc astronomom na zdobycie dodatkowych informacji o powierzchni i atmosferze planety.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Odpowiedź na tytułowe pytanie brzmi: tak. Jednak „prawdziwe” w odniesieniu do fotografowanych przez Webba obiektów nie oznacza tutaj takie, jak byśmy zobaczyli je na własne oczy będąc w miejscu Webba, ale takie, jakimi są w rzeczywistości. Żeby to zrozumieć, musimy co nieco wiedzieć o działaniu ludzkiego wzroku oraz Teleskopu Kosmicznego Jamesa Webba (JWST).
      Gdy jesteśmy na ulicy i słyszymy zbliżającą się do nas karetkę pogotowia jadącą na sygnale, zauważymy, że dźwięk jest coraz wyższy, a gdy samochód nas minie, staje się coraz niższy. Fala dźwiękowa zbliżającego się do nas źródła sygnału staje się coraz krótsza, a wydłuża się, gdy źródło sygnału się od nas oddala. Takie samo zjawisko ma miejsce w przypadku fali elektromagnetycznej. Wszechświat się rozszerza, więc – generalnie rzecz biorąc – galaktyki i gwiazdy się od nas oddalają. Długość fali biegnącego w naszym kierunku światła staje się coraz większa, światło to staje się coraz bardziej czerwone. A im bardziej odległy od nas obiekt, tym bardziej czerwone światło do nas dociera. Mówimy tutaj o zjawisku przesunięcia ku czerwieni.
      Ludzie widzą światło o ograniczonym zakresie długości fali. Odległość pomiędzy Ziemią a większością obiektów we wszechświecie jest tak duża, że docierające do nas fale świetlne znajdują się w zakresie podczerwieni, którego nasze oczy nie widzą. Jednak Teleskop Webba jest wyspecjalizowany właśnie w odbieraniu podczerwieni. Dlatego możemy dojrzeć dzięki niemu bardzo stare, niezwykle odległe obiekty.
      JWST korzysta z trzech zwierciadeł. Największe, główne, odpowiada za zbieranie światła docierającego do teleskopu. Zwierciadło główne skupie je i kieruje do zwierciadła wtórnego, stamtąd zaś światło trafia do instrumentów naukowych, a trzecie ze zwierciadeł koryguje wszelkie zniekształcenia wywołane przez dwa pierwsze. Teleskop Webba korzysta ze specjalnej perforowanej maski, która blokuje część docierającego doń światła, symulując działanie wielu teleskopów, dzięki czemu może zwiększyć rozdzielczość. Technika ta pozwala na zdobycie większej ilości danych na temat bardzo jasnych sąsiadujących ze sobą obiektów. Webba wyposażono też w spektrografy, które rozbijają światło na części składowe, ujawniając informacje o intensywności poszczególnych fali światła. Obserwatorium wyposażono też macierz 248 000 mikromigawek służących do pomiaru spektrum światła.
      Za dostarczenie nam obrazu odpowiedzialny jest Zintegrowany Moduł Instrumentów Naukowych, w skład którego wchodzą trzy urządzenia. NIRCam, działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona rejestruje światło z pierwszych gwiazd i galaktyk, pokazuje gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Drugim z nich jest NIRSpec, spektrograf również działający w zakresie od 0,6 do 5 mikrometrów. Spektrografy to urządzenia do rejestracji całego widma promieniowania. Analiza tego widma pozwoli naukowcom poznać wiele cech fizycznych badanego obiektu, w tym jego temperaturę, masę i skład chemiczny. Wiele z obiektów, które Webb będzie badał, jest tak słabo widocznych, że olbrzymie zwierciadło teleskopu będzie musiało prowadzić obserwacje przez setki godzin, by zebrać ilość światła wystarczającą do stworzenia całego widma. Natomiast Mid-Infared Instrument (MIRI) składa się zarówno z kamery jak i spektrografu pracujących w średniej podczerwieni. To zakresy od 5 do 28 mikrometrów. Fal o takiej długości nasze oczy nie widzą. Ten bardzo czuły instrument zobaczy przesunięte ku czerwieni światło odległych galaktyk, tworzących się gwiazd i słabo widocznych komet. Może obserwować Pas Kuipera. Kamer MIRI będzie zdolna do wykonania podobnych szerokokątnych zdjęć, z jakich zasłynął Hubble. A jego spektrograf umożliwi poznanie wielu cech fizycznych odległych obiektów.
      Wszystkie wymienione tutaj instrumenty dostarczają naukowcom danych, które należy odpowiednio dostosować tak, by nasze oczy mogły je zobaczyć. Obrazów z Webba, które udostępnia NASA, nie moglibyśmy zobaczyć będąc w miejscu teleskopu, zarówno dlatego, że nasze oczy nie odbierają światła o takiej długości fali, jak i dlatego, że Webb jest znacznie bardziej czuły na światło. Zatem obrazy przekazywane przez Webba bardziej odpowiadają rzeczywistości, są bardziej prawdziwe, niż to, co możemy zobaczyć na własne oczy. Teleskop korzysta z aż 27 filtrów rejestrujących fale podczerwone o różnej długości. Naukowcy dokładnie analizują te fale, zbierają informacje np. o ich intensywności, a następnie każdej z nich przypisują falę o długości z zakresu światła widzialnego. Najkrótszym przypisywana jest barwa niebieska, dłuższym zielona, najdłuższym czerwona. Po złożeniu tak otrzymany obrazów należy przeprowadzić jeszcze balans, bieli, skorygować kontrast oraz kolory i podziwiać niezwykłe zdjęcia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Systemy podtrzymywania życia, woda, żywność, habitaty, instrumenty naukowe i wiele innych elementów będzie niezbędnych do przeprowadzenia załogowej misji na Marsa. Jednym z najważniejszych z nich są systemy produkcji energii. Te obecnie stosowane w misjach kosmicznych są albo niebezpieczne – wykorzystują rozpad pierwiastków promieniotwórczych – albo też niestabilne wraz ze zmianami pór dnia i roku, bo korzystają z energii słonecznej.
      Wybór miejsca lądowania każdej z misji marsjańskich to skomplikowany proces. Eksperci muszą bowiem określić miejsca, których zbadanie może przynieść jak najwięcej korzyści i w których w ogóle da się wylądować. W przypadku misji załogowych sytuacja jeszcze bardziej się skomplikuje, gdyż dodatkowo będą musiały być to miejsca najlepiej nadające się do życia, np. takie, w których można pozyskać wodę.
      Grupa naukowców pracujących pod kierunkiem Victorii Hartwick z NASA wykorzystała najnowsze modele klimatyczne Marsa do przeanalizowania potencjału produkcji energii z wiatru na Czerwonej Planecie. Dotychczas podczas rozważań nad produkcją energii na Marsie nie brano pod uwagę atmosfery. Jest ona bowiem bardzo rzadka w porównaniu z atmosferą Ziemi.
      Ku swojemu zdumieniu naukowcy zauważyli, że pomimo rzadkiej marsjańskiej atmosfery wiejące tam wiatry są na tyle silne, by zapewnić produkcję energii na dużych obszarach Marsa.
      Badacze odkryli, że w niektórych proponowanych miejscach lądowania prędkość wiatru jest wystarczająca, by stanowił on jedyne lub uzupełniające – wraz z energią słoneczną bądź jądrową – źródło energii. Pewne regiony Marsa są pod tym względem obiecujące, a inne – interesujące z naukowego punktu widzenia – należałoby wykluczyć biorąc pod uwagę jedynie potencjał energii wiatrowej lub słonecznej. Okazało się jednak, że energia z wiatru może kompensować dobową i sezonową zmienność produkcji energii słonecznej, szczególnie na średnich szerokościach geograficznych czy podczas regionalnych burz piaskowych. Co zaś najważniejsze, proponowane turbiny wiatrowe zapewnią znacznie bardziej stabilne źródło energii po połączeniu ich z ogniwami fotowoltaicznymi.
      Naukowcy przeanalizowali hipotetyczny system, w którym wykorzystane zostają panele słoneczne oraz turbina Enercon E33. To średniej wielkości komercyjny system o średnicy wirnika wynoszącej 33 metry. Na Ziemi może ona dostarczyć 330 kW mocy. Z analiz wynika, że na Marsie dostarczałaby średnio 10 kW.
      Obecnie szacuje się, że 6-osobowa misja załogowa będzie potrzebowała na Marsie minimum 24 kW mocy. Jeśli wykorzystamy wyłącznie ogniwa słoneczne, produkcja energii na potrzeby takiej misji będzie większa od minimum tylko przez 40% czasu. Jeśli zaś dodamy turbinę wiatrową, to odsetek ten wzrośnie do 60–90 procent na znacznych obszarach Marsa. Połączenie wykorzystania energii słonecznej i wiatrowej mogłoby pozwolić na przeprowadzenie misji załogowej na tych obszarach Czerwonej Planety, które wykluczono ze względu na słabą obecność promieniowania słonecznego. Te regiony to np. obszary polarne, które są interesujące z naukowego punktu widzenia i zawierają wodę.
      Autorzy badań zachęcają do prowadzenia prac nad przystosowaniem turbin wiatrowych do pracy w warunkach marsjańskich. Tym bardziej, że wykorzystanie wiatru może wpłynąć na produkcję energii w wielu miejscach przestrzeni kosmicznej. Hartwick mówi, że jest szczególnie zainteresowana potencjałem produkcji energii z wiatru w takich miejscach jak Tytan, księżyc Saturna, który posiada gęstą atmosferę, ale jest zimny. Odpowiedź na tego typu pytania będzie jednak wymagała przeprowadzenia wielu badań interdyscyplinarnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed rokiem, 24 grudnia,  pracujący na Marsie lądownik InSight zarejestrował trzęsienie o magnitudzie 4. Dopiero później udało się ustalić, że przyczyną trzęsienia był jeden z największych zaobserwowanych upadków meteorytów. Teraz na łamach Science opisano wyniki badań.
      Przyczynę trzęsienia udało się ustalić po przeanalizowaniu zdjęć wykonanych przed trzęsieniem i po nim przez Mars Reconnaissance Orbiter (MRO). Na fotografiach widać nowy krater uderzeniowy. Stało się to rzadką okazją do zbadania upadku meteorytu i wywołanego nim trzęsienia na Marsie.
      Naukowcy oceniają, że meteoroid, który spadł na Czerwoną Planetę, miał od 5 do 12 metrów średnicy. Taki obiekt spłonąłby w ziemskiej atmosferze, jednak atmosfera Marsa jest około 100-krotnie rzadsza, więc nie uchroniła swojej planety przed uderzeniem. W wyniku kolizji powstał krater o średnicy 150 i głębokości 21 metrów. Część wyrzuconego zeń materiału wylądowała 37 kilometrów dalej. Dzięki danym sejsmologicznym z InSight oraz zdjęciom wiemy, że to jeden z największych kraterów, jaki utworzył się na oczach człowieka w Układzie Słonecznym.
      Oczywiście na Marsie znajduje się olbrzymia liczba większych kraterów, jednak powstały one przed jakąkolwiek misją na Czerwoną Planetę. Co jednak niezwykle interesujące, w wyniku uderzenia na powierzchnię wyrzucony zostały duże kawałki lodu, który był pogrzebany bliżej marsjańskiego równika niż lód, jaki mieliśmy okazję dotychczas oglądać. Ma to znaczenie dla planowania przyszłych misji załogowych.
      Misja InSight od listopada 2018 roku bada wnętrze Marsa. Zmierzyła m.in. średnicę jego jądra. Głównym źródłem informacji na temat budowy wnętrza Czerwonej Planety są fale sejsmiczne, dzięki którym można poznać rozmiary, skład oraz głębokość, na jakiej znajdują się poszczególne jej warstwy. Od rozpoczęcia badań InSight wykrył 1318 trzęsień, z których część była spowodowana upadkami meteorytów. Jednak trzęsienie z grudnia ubiegłego roku było pierwszym, przy którym wystąpiły fale powierzchniowe, które pozwoliły na szczegółowe badanie skorupy Marsa.
      Niestety, misja InSight wkrótce dobiegnie końca. W ciągu ostatnich miesięcy na panelach słonecznych lądownika nagromadziło się dużo pyłu, więc drastycznie spadła ilość docierającej doń energii. Najprawdopodobniej za około 6 tygodni InSight się wyłączy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Webba przyłapał masywne galaktyki podczas procesu tworzenia przez nie gromady skupionej wokół ekstremalnie czerwonego kwazara. Zaskakujące odkrycie pozwoli nam lepiej zrozumieć, jak we wczesnym wszechświecie dochodziło do tworzenia gromad galaktyk i powstania wszechświata takiego, jakim znamy go dzisiaj.
      Kwazary to rodzaj galaktyki aktywnej. Mają one olbrzymią jasność, a w ich centrum znajduje się supermasywna czarna dziura. Wpadający w nią gaz powoduje, że kwazar świeci tak jasno, iż przyćmiewa wszystkie gwiazdy w galaktyce.
      Teleskop Webba badał kwazar SDSS J165202.64+172852.3 odległy od nas o 11,5 miliarda lat świetlnych. Ze względu na przesunięcie ku czerwieni, zjawisko polegające na tym, iż im bardziej odległe źródło, tym większą długość fali ma docierające z niego światło, kwazar ten jest czerwony. To zaś powoduje, że Webb, wyspecjalizowany w obserwowaniu światła podczerwonego, jest świetnym instrumentem do jego obserwacji.
      Nasz kwazar to jedna z najpotężniejszych znanych nam aktywnych galaktyk znajdujących się w tak dużej odległości. Astronomowie od dawna spekulowali, że potężna emisja z kwazaru może wywoływać zjawisko zwane „galaktycznym wiatrem”, który wypycha gaz z galaktyki macierzystej i może w znaczącym stopniu wpływać na formowanie się w niej gwiazd. Naukowcy, którzy już wcześniej obserwowali SDSS J165202.64+172852.3 za pomocą Hubble'a i innych teleskopów spekulowali, że potężna emisja może być sygnałem, że galaktyka ta łączy się z inną, której nie można dostrzec.
      Teraz jednak dysponujemy Teleskopem Webba. Grupa naukowców wykorzystała spektrograf NIRSpec, który jest w stanie zebrać dane z całego pola widzenia teleskopu i obserwowac nie tylko kwazar, ale całą jego galaktykę macierzystą oraz jej otoczenie. Uczeni dostrzegli coś, czego się nie spodziewali. Wokół kwazaru krążą co najmniej 3 inne galaktyki, a dzięki możliwościom Webba udało się zbadać ruch całego otaczającego materiału, co pozwoliło stwierdzić, że kwazar jest centrum formującej się gromady galaktyk.
      Znamy jedynie kilka protogromad galaktyk z tak wczesnego czasu po powstaniu wszechświata. Bardzo trudno jest je znaleźć, gdyż niewiele  gromad mogło się uformować w tak krótkim czasie po Wielkim Wybuchu, mówi główna autorka badań, doktor Dominika Wylezalek z Uniwersytetu w Heidelbergu.
      Astronomowie przypuszczają, że jeszcze nie dostrzegli wszystkiego. Archiwalne dane z Hubble'a sugerują, że galaktyk wokół kwazaru może być więcej. Nasze wstępne dane wskazują na silne interakcje pomiędzy sąsiadującymi galaktykami, dodaje Andrey Vayner z Uniwersytetu Johnsa Hopkinsa.
      Trzy potwierdzone galaktyki krążą wokół siebie z bardzo dużą prędkością, co wskazuje, że znajduje się tam dużo masy. Biorąc pod uwagę odległości pomiędzy nimi a kwazarem można przypuszczać, że to jeden z najbardziej gęstych obszarów we wczesnym wszechświecie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zdaniem dwojga naukowców z Uniwersytetu Kalifornijskiego w Davis, atmosfera Marsa uformowała się w sposób, który przeczy współczesnym teoriom. Do takich wniosków doszli Sandrine Peron i Sujoy Mukhopadhyay, którzy przeprowadzili nowe analizy pochodzącego z wnętrza Marsa meteorytu Chassigny.
      Układ Słoneczny powstał z mgławicy gazu i pyłu, które utworzyły Słońce i planety. Chronologię jego powstawania można odtworzyć badając ilość poszczególnych pierwiastków i stosunki ich izotopów.
      Obecne teorie mówią, że planety skaliste, jak Mars, uzyskały pierwiastki lotne – jak np. wodór, tlen czy gazy szlachetne – z otaczającej je mgławicy przedsłonecznej podczas wczesnych etapów formowania się. Pierwiastki te najpierw rozpuściły się w płaszczu planety skalistej – który wówczas był jednym wielkim oceanem magmy – a gdy magma stygła i się krystalizowała, doszło do jej odgazowania i te pobrane z mgławicy pierwiastki trafiły do atmosfery planet, skąd powoli uciekały w przestrzeń kosmiczną. Dodatkowym źródłem pierwiastków lotnych w planetach skalistych były zaś meteoryty skaliste, chondryty, które rozbijały się o ich powierzchnię.
      Jeśli taka teoria jest prawdziwa, to należałoby się spodziewać, że pierwiastki, jakie znajdziemy we wnętrzu planety, pochodzą głównie z mgławicy protoplanetarnej lub są mieszaniną pierwiastków z mgławicy i chondrytów. Natomiast pierwiastki lotne w atmosferze powinny pochodzić głównie z chondrytów, gdyż te pochodzące z mgławicy zdążyły się w dużej mierze ulotnić.
      Peron i Mukhopadhyay zbadali izotopy kryptonu w meteorycie. Jako że stosunki izotopów kryptonu w mgławicy przedsłonecznej i w chondrytach są różne, badanie pozwala ustalić, skąd pochodzi krypton we wnętrzu Marsa. Okazało się, że we wnętrzu Marsa znajduje się krypton pochodzący z chondrytów, a nie z mgławicy.
      Odkrycie to wskazuje, że chondryty dostarczały pierwiastki lotne do wnętrza Marsa znacznie wcześniej, niż sądzono, jeszcze w czasie, gdy obecna była mgławica przedsłoneczna. Dlatego też naukowcy z UC Davis uważają, że pierwiastki lotne w atmosferze planety nie pochodzą z odgazowania płaszcza, a zostały przechwycone bezpośrednio z mgławicy. Ta zaś przestała istnieć około 10 milionów lat po narodzinach Układu Słonecznego. To zaś rodzi pytanie, w jaki sposób pierwiastki te przetrwały przez tak długi czas w atmosferze. Być może zaraz po uformowaniu na Marsie panowały niskie temperatury i pierwiastki zostały uwięzione w czapach lodowych na biegunach planety.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...