Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Materia uzyskana w Kioto jest 3 miliardy razy chłodniejsza niż przestrzeń międzygwiezdna

Recommended Posts

Japońsko-amerykański zespół naukowy wykorzystuje atomy 3 miliardy razy chłodniejsze niż przestrzeń międzygwiezdna do badań nad kwantowymi podstawami magnetyzmu. Jeśli gdzieś jakaś obca cywilizacja nie przeprowadza podobnych badań, to fermiony z Kyoto University są najchłodniejszymi atomami we wszechświecie, mówi Kaden Hazzard z Rice University, jeden z autorów badań.

Zespół z Kioto, pracujący pod kierunkiem Yoshiro Takahashiego wykorzystuje lasery do schłodzenia fermionów – w tym przypadku są to atomy iterbu – do temperatury jednej miliardowej stopnia powyżej zera absolutnego (0,000000001 K). To około 3 miliardów razy mniej niż temperatura przestrzeni międzygwiezdnej. Przestrzeń ta jest bowiem wciąż ogrzewana przez poświatę po Wielkim Wybuchu, promieniowanie mikrofalowe tła. W tak niskich temperaturach zmienia się fizyka. Większą rolę odgrywa mechanika kwantowa i można obserwować nowe zjawiska, wyjaśnia Hazzard.

Atomy podlegają zasadom mechaniki kwantowej, jednak zjawiska takie ujawniają się dopiero, gdy zostaną schłodzone do temperatur o ułamki stopnia wyższych niż zero absolutne. Lasery od około 30 lat są używane do chłodzenia atomów. Wykorzystuje się tworzone za pomocą wiązek laserowych sieci optyczne, które działają jak kwantowe symulatory pozwalające na rozwiązywanie problemów będących poza zasięgiem konwencjonalnych komputerów.

Uczeni z Kioto wykorzystali sieć optyczną do symulowania modelu Hubbarda. Jest on powszechnie używany do badania magnetycznych i nadprzewodzących zjawisk zachodzących w materiałach. Symulowany model charakteryzuje się specjalną symetrią znaną jako SU(N), gdzie SU oznacza specjalną grupę unitarną – matematyczny sposób opisywania symetrii – a N to możliwe wartości spinu cząstki użytej podczas badań. Im większa jest wartość N tym większa symetria całego modelu i złożoność opisywanych zjawisk. Atomy iterbu mogą przyjmować jedną z 6 wartości spinu, a symulator z Kioto jest pierwszym, który pozwala na uzyskanie SU(6). To coś, to jest poza zasięgiem najpotężniejszych współczesnych superkomputerów.

Naukowcy wyjaśniają, że dzięki swojemu modelowi chcą poznać najdrobniejsze cechy, które powodują, że ciało stałe ma właściwości metalu, izolatora, magnesu lub nadprzewodnika. Jednym z najbardziej fascynujących pytań jest to o rolę symetrii w uzyskiwaniu takich właściwości. Jeśli uda się nam na nie odpowiedzieć, być może będziemy w stanie stworzyć materiały o wymaganych przez nas cechach, mówi Eduardo Ibarra-García-Padilla.


« powrót do artykułu

Share this post


Link to post
Share on other sites
21 godzin temu, KopalniaWiedzy.pl napisał:

Wykorzystuje się tworzone za pomocą wiązek laserowych sieci optyczne, które działają jak kwantowe symulatory pozwalające na rozwiązywanie problemów będących poza zasięgiem konwencjonalnych komputerów.


Hm.. że co? O sztucznych problemach wymyślonych tak, aby akurat kilka szkiełek i laser mogło udawać, że rozwiązuje jakiś problem można by sobie już darować. Potem naród myśli, że coś będzie z komputerów kwantowych poza urojeniami.
 

 

21 godzin temu, KopalniaWiedzy.pl napisał:

Atomy iterbu mogą przyjmować jedną z 6 wartości spinu, a symulator z Kioto jest pierwszym, który pozwala na uzyskanie SU(6). To coś, to jest poza zasięgiem najpotężniejszych współczesnych superkomputerów.

21 godzin temu, KopalniaWiedzy.pl napisał:

Uczeni z Kioto wykorzystali sieć optyczną do symulowania modelu Hubbarda. Jest on powszechnie używany do badania magnetycznych i nadprzewodzących zjawisk zachodzących w materiałach.

Nazwijmy rzeczy po imieniu, żadna to symulacja ta sieć optyczna to prostu model Hubbarda. Drabina która symuluje drabinę. Troszkę to żałosne jest, no nic ważne że granty na kolejne badania wpadną. 

21 godzin temu, KopalniaWiedzy.pl napisał:

Atomy iterbu mogą przyjmować jedną z 6 wartości spinu, a symulator z Kioto jest pierwszym, który pozwala na uzyskanie SU(6). To coś, to jest poza zasięgiem najpotężniejszych współczesnych superkomputerów.

Tylko do czego to ma się przydać? Widzę to ogromną wartość dodatnią jako formę weryfikacji teorii, ale co to ma wspólnego z obliczeniami to nie wiem. Zbadano po prostu jak działa drabina a opowiada się, głodne kawałki, że drabina zasymulowała drabinę :) .

Sory, ale trzeba te wszystkie farmazony prostować, tak aby czasem nowe pokolenia nie zachciały by  dalej sponsorować prac nad komputerami kwantowymi. Za chwile znajdą się chętni do sponsorowania prac nad wehikułem czasu.  :P 

Share this post


Link to post
Share on other sites
9 hours ago, l_smolinski said:

Troszkę to żałosne jest, no nic ważne że granty na kolejne badania wpadną. 

Trochę nie na temat może, ale tak się przypomniało że mój przyjaciel z dzieciństwa 3 lata starszy poszedł na fizykę na łódzki uniwerek, zrobił doktorat i pracował przy mikroskopach około roku 2005 kiedy jeszcze sutdiowałem politechnice. Oczywiście uciekłem bo przecież papierek nie jest taki ważny itd. W sumie on miał rację wtedy.  Przysłuchiwałem się jego opowieściom o tym co się robi na co leci kasa "chodź z tego spędu bydła politechniki na uniwerek". Ale  nasze drogi rozeszły mniej więcej po takim komentarzu z mojej strony w jego "zachwyt" odnośnie nanorurek weglowych. Twierdziłem a byliśmy na etapie chyba 130nm z układami scalonymi, że zanim zastąpi krzem to jeszcze trochę wody upłynie w wiśle, żeby ochłonął, że to ma jakieś kiepskie zastosowanie w praktyce i nad praktycznym zastosowaniem może wypadałoby pomyśleć zamiast się jarać bez sensu. Że prawo Moore jeszcze daleko do końca.. no i w sumie długą drogę przeszło,  najpierw 45nm izolatory o wysokiej przenikalności, później tranzystory FinFET w pion postawione, na koniec chyba tak się wydaje EUV, teraz dopiero teraz przyszedł czas na nanorurki węglowe od 5nm nawet się pogubiłem na jakim etapie jesteśmy. GaFET czy coś. Od czasu zwyżki akcji AMD ok 2018 i póxniej 2019 przestałem śledzić temat. Minęło jakby nie było 15 lat, jednak do czegoś się przydały te teoretyczne prace kontaktu nie mam ale podejrzewam że w tym czasie Paweł został już profesorem nadzwyczajnym :D  Troche to było walenie kulą w płot na oślep kombinowanie na tym uniwerku, nabijanie kabzy, ale jednak na coś to się przydaje. Pamiętam w międzyczasie zawiązała się polska firma TopGan odnośnie arsenku galu czy coś potrzebne przy produkcji dobrej jakości chyba zielonych diod LED. To akurat lubię czyli przekuwanie teorii w praktykę. Ale w nano-skali praktycznie nic nie można zobaczyć pod mikroskopem, od razu znaleźć zastosowanie.. przykład perowskity?! Nikt w babeczkę nie wierzył w jakieś dziwne materiały a może to się okazać sporą rewolucją w fotowoltanice.

Próbowali zobaczyć struktury 14nm i nic z tego nie wyszło jedynie górne warstwy można jakoś rozróżnić. Więc z jednej strony - podoba mi się pańskie podejście  - kolejny post w tym tonie, ogólnie świat nauki, granty "zielone łady" itp. wypaczają i tworzą jakieś śmieciowe teorie, pod polityczne zamówienie. Przecież wiadomo że już nie chodzi o rozwój ludzkości ale o ograniczenie zdławienie.  No ale jednak może czemuś to się przysłuży?  Może po prostu sobie tego jeszcze nie wyobrażamy? Nie wiem nie chcę popełnić błędu przeszłości raz jeszcze..  

To chyba już udostępniałem zanim zniknąłem z kopalni?

https://odysee.com/the-crisis-of-science:1b81744f696731f6da64e27e1ca0b08e84411fd0?src=embed

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z University of Rochester poinformowali o osiągnięciu nadprzewodnictwa w temperaturze pokojowej. Nadprzewodnictwo to stan, w którym ładunek elektryczny może podróżować przez materiał nie napotykając żadnych oporów. Dotychczas udawało się je osiągnąć albo w niezwykle niskich temperaturach, albo przy gigantycznym ciśnieniu. Gdyby odkrycie się potwierdziło, moglibyśmy realnie myśleć o bezstratnym przesyłaniu energii, niezwykle wydajnych silnikach elektrycznych, lewitujących pociągach czy tanich magnesach do rezonansu magnetycznego i fuzji jądrowej. Jednak w mamy tutaj nie jedną, a dwie łyżki dziegciu.
      O nadprzewodnictwie wysokotemperaturowym mówi się, gdy zjawisko to zachodzi w temperaturze wyższej niż -196,2 stopni Celsjusza. Dotychczas najwyższą temperaturą, w jakiej obserwowano nadprzewodnictwo przy standardowym ciśnieniu na poziomie morza jest -140 stopni C. Naukowcy z Rochester zaobserwowali nadprzewodnictwo do temperatury 20,6 stopni Celsjusza. Tutaj jednak dochodzimy do pierwszego „ale“. Zjawisko zaobserwowano bowiem przy ciśnieniu 1 gigapaskala (GPa). To około 10 000 razy więcej niż ciśnienie na poziomie morza. Mimo to mamy tutaj do czynienia z olbrzymim postępem. Jeszcze w 2021 roku wszystko, co udało się osiągnąć to nadprzewodnictwo w temperaturze do 13,85 stopni Celsjusza przy ciśnieniu 267 GPa.
      Drugim problemem jest fakt, że niedawno ta sama grupa naukowa wycofała opublikowany już w Nature artykuł o osiągnięciu wysokotemperaturowego nadprzewodnictwa. Powodem był użycie niestandardowej metody redukcji danych, która została skrytykowana przez środowisko naukowe. Artykuł został poprawiony i obecnie jest sprawdzany przez recenzentów Nature.
      Profesor Paul Chig Wu Chu, który w latach 80. prowadził przełomowe prace na polu nadprzewodnictwa, ostrożnie podchodzi do wyników z Rochester, ale chwali sam sposób przeprowadzenia eksperymentu. Jeśli wyniki okażą się prawdziwe, to zdecydowanie mamy tutaj do czynienia ze znaczącym postępem, dodaje uczony.
      Z kolei James Walsh, profesor chemii z University of Massachusetts przypomina, że prowadzenie eksperymentów naukowych w warunkach wysokiego ciśnienia jest bardzo trudne, rodzi to dodatkowe problemy, które nie występują w innych eksperymentach. Stąd też mogą wynikać kontrowersje wokół wcześniejszej pracy grupy z University of Rochester.
      Ranga Dias, który stoi na czele zespołu badawczego z Rochester zdaje sobie sprawę, że od czasu publikacji poprzedniego artykułu jego zespół jest poddawany bardziej surowej ocenie. Dlatego też prowadzona jest polityka otwartych drzwi. "Każdy może przyjść do naszego laboratorium i obserwować, jak dokonujemy pomiarów. Udostępniliśmy recenzentom wszystkie dane", dodaje. Uczony dodaje, że podczas ponownego zbierania danych na potrzeby poprawionego artykułu współpracowali z przedstawicielami Argonne National Laboratory oraz Brookhaven National Laboratory. Dokonywaliśmy pomiarów w obecności publiczności, zapewnia.
      Materiał, w którym zaobserwowano nadprzewodnictwo w temperaturze ponad 20 stopni Celsjusza, to wodorek lutetu domieszkowany azotem. Profesor Eva Zurek ze State University of New York mówi, że potrzebne jest niezależne potwierdzenie wyników grupy Diasa. Jeśli jednak okaże się, że są one prawdziwe, uczona uważa, że opracowanie nadprzewodnika ze wzbogaconego azotem wodorku lutetu pracującego w temperaturze pokojowej lub opracowanie technologii nadprzewodzących pracujących przy umiarkowanym ciśnieniu powinno być stosunkowo proste.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół astronomów poinformował o odkryciu jednych z najgorętszych gwiazd we wszechświecie. Temperatura powierzchni każdej z 8 gwiazd wynosi ponad 100 000 stopni Celsjusza. Są więc one znacznie gorętsze niż Słońce.
      Autorzy badań przeanalizowali dane pochodzące z Southern African Large Telescope (SALT). Ten największy na Półkuli Południowej teleskop optyczny posiada heksagonalne zwierciadło o wymiarach 10x11 metrów. Naukowcy przeprowadzili przegląd danych pod kątem bogatych w hel karłów i odkryli niezwykle gorące białe karły oraz gwiazdy, które się wkrótce nimi staną. Temperatura powierzchni najbardziej gorącego z nich wynosi aż 180 000 stopni Celsjusza. Dla porównania, temperatura powierzchni Słońca to „zaledwie” 5500 stopni Celsjusza.
      Jedna ze zidentyfikowanych gwiazd znajduje się w centrum odkrytej właśnie mgławicy o średnicy 1 roku świetlnego. Dwie inne to gwiazdy zmienne. Wszystkie z gorących gwiazd znajdują sie na zaawansowanych etapach życia i zbliżają do końca etapu białch karłów. Ze względu na niezwykle wysoką temperaturę gwiazdy te są ponadstukrotnie jaśniejsze od Słońca, co jest niezwykłą cechą jak na białe karły.
      Białe karły to niewielkie gwiazdy, rozmiarów Ziemi, ale o olbrzymiej masie, porównywalnej z masą Słońca. To najbardziej gęste z gwiazd wciaż zawierających normalną materię. Z kolei gwiazdy, które mają stać się białymi karłami są od nich kilkukrotnie większe, szybko się kurczą i w ciągu kilku tysięcy lat zmienią się w białe karły.
      Gwiazdy o temperaturze powierzchni 100 000 stopni Celsjusza lub więcej są niezwykle rzadkie. Byliśmy bardzo zdziwieni, gdyż znaleźliśmy ich aż tak wiele. Nasze odkrycie pomoże w zrozumieniu ostatnich etapów ewolucji gwiazd, mówi Simon Jeffery z Armagh Observatory and Planetarium, który stał na czele grupy badawczej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Atmosfera Jowisza słynna jest ze swoich wielkich kolorowych wirów. Ma też jednak mniej znaną niezwykłą cechę. Jej górna część jest wyjątkowo gorąca. O setki stopni cieplejsza, niż być powinna. Teraz naukowcy poinformowali o odkryciu gigantycznej, rozciągającej się na 130 000 kilometrów fali ciepła o temperaturze przekraczającej 700 stopni.
      Do Jowisza dociera ponad 25-krotnie mniej promieniowania słonecznego niż do Ziemi. Z obliczeń wynika, że górne partie jego atmosfery powinny mieć temperaturę -70 stopni Celsjusza. Tymczasem pomiary wykonywane w różnych miejscach wskazują, że w górnych partiach chmur panują temperatury powyżej 400 stopni Celsjusza.
      James O'Donoghue z Japońskiej Agencji Kosmicznej (JAXA) stworzył wraz z kolegami pierwszą mapę górnych warstw atmosfery Jowisza, która pozwalała na zidentyfikowanie dominujących źródeł ciepła w atmosferze. Teraz uczeni poinformowali, że za podgrzewanie atmosfery mogą odpowiadać zorze polarne.
      Zorze znamy też z Ziemi, jednak o ile na Błękitnej Planecie jest to zjawisko czasowe, do którego dochodzi podczas zwiększonej aktywności Słońca, o tyle na Jowiszu zorze istnieją bez przerwy, zmienia się tylko ich intensywność. Naukowcy z JAXA zauważyli, że potężne zorze rozgrzewają atmosferę wokół biegunów Jowisza do temperatury ponad 700 stopni Celsjusza, a później ciepło to jest roznoszone przez wiatr wokół całej planety.
      Uczeni odkryli, wspomnianą na wstępie, szczególnie intensywną falę gorąca bezpośrednio pod zorzą północną i stwierdzili, że fala ta przemieszcza się w stronę równika z prędkością tysięcy kilometrów na godzinę. Pojawiła się ona prawdopodobnie w wyniku silniejszego impulsu wiatru słonecznego, który zderzył się z polem magnetycznym Jowisza i dodatkowo podgrzał atmosferę.
      Zorze bez przerwy podgrzewają atmosferę Jowisza, a fale, jak ta przez nas odkryta, są dodatkowym ważnym źródłem energii, stwierdził O'Donoghoue podczas odczytu wygłoszonego w trakcie Europlanet Science Congress (EPSC) 2022 w Granadzie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Grupa japońskich naukowców z Kyoto University wykorzystała eksplozje do wyprodukowania... najmniejszych diamentowych termometrów, które można będzie wykorzystać do bezpiecznych pomiarów różnic temperatury w pojedynczej żywej komórce.
      Gdy w sieci krystalicznej diamentu dwa sąsiadujące atomy węgla zostaną zastąpione pojedynczym atomem krzemu, pojawia się optycznie aktywne miejsce, zwane centrum krzem-wakancja (silicon-vacancy center, SiV). Od niedawna wiemy, że takie miejsca są obiecującym narzędziem do pomiaru temperatur w skali nanometrów. Atom krzemu, gdy zostanie wzbudzony laserem, zaczyna jasno świecić w wąskim zakresie światła widzialnego lub bliskiej podczerwieni, a kolor tego światła zmienia się liniowo w zależności od temperatury otoczenia diamentu.
      Zjawisko to jest bezpieczne dla żywych organizmów, nawet dla bardzo delikatnych struktur. To zaś oznacza, że można je wykorzystać podczas bardzo złożonych badań nad strukturami biologicznymi, np. podczas badania procesów biochemicznych wewnątrz komórki. Problem stanowi jednak sam rozmiar nanodiamentów. Uzyskuje się je obecnie różnymi technikami, w tym za pomocą osadzania z fazy gazowej, jednak dotychczas potrafiliśmy uzyskać nanodiamenty o wielkości około 200 nm. Są one na tyle duże, że mogą uszkadzać struktury wewnątrzkomórkowe.
      Norikazu Mizuochi i jego zespół opracowali technikę pozyskiwania 10-krotnie mniejszych niż dotychczas nanodiamentów SiV. Japońscy naukowcy najpierw wymieszali krzem ze starannie dobraną mieszaniną materiałów wybuchowych. Następnie, w atmosferze wypełnionej CO2, dokonali eksplozji. Później zaś przystąpili do wieloetapowej pracy z materiałem, który pozostał po eksplozji. Najpierw za pomocą kwasu usunęli sadzę i metaliczne zanieczyszczenia, następnie rozcieńczyli i wypłukali uzyskany materiał w wodzie dejonizowanej, w końcu zaś pokryli uzyskane nanodiamenty biokompatybilnym polimerem. Na końcu za pomocą wirówki usunęli wszystkie większe nanodiamenty. W ten sposób uzyskali jednorodny zbiór sferycznych nanodiamentów SiV o średniej średnicy 20 nm. To najmniejsze wyprodukowane nanodiamenty SiV.
      Mizouchi wraz z kolegami przeprowadzili serię eksperymentów, podczas których wykazali, że ich nanodiamenty pozwalają na precyzyjne pomiary temperatury w zakresie od 22 do 40,5 stopnia Celsjusza. Zakres ten obejmuje temperatury wewnątrz większości organizmów żywych. To zaś otwiera nowe możliwości badań struktur wewnątrzkomórkowych. Japończycy zapowiadają, że rozpoczynają prace nad zwiększeniem liczby SiV w pojedynczym nanodiamencie, co ma pozwolić na uzyskanie jeszcze większej precyzji pomiaru. Dzięki temu – mają nadzieję – w przyszłości można będzie badać poszczególne organelle.
      Szczegóły badań zostały opisane na łamach Carbon.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W czasie gdy wielu z nas starało się uchronić przed upałami, w Tatrach zanotowano lipcowy rekord zimna. Ustawiona przez „Łowców Mrozu” stacja pomiarowa w Litworowym Kotle wskazała -5,7 stopnia Celsjusza. Taka temperatura to wynik ukształtowania terenu, zjawisk krasowych i odpowiedniej pogody, wyjaśnił Kamil Filipowski.
      Projekt „Łowców Mrozu” to pomysł Kamila Filipowskiego, Arnolda Jakubczyka i Michała Wróbla. Na czele grupy stoi doktor Bartosz Czernecki z Zakładu Meteorologii i Klimatologii Wydziału Nauk Geograficznych i Geologicznych Uniwersytetu im. Adama Mickiewicza w Poznaniu. Celem projektu jest mierzenie temperatur w tatrzańskich mrozowiskach.
      Naukowcy rozpoczęli pomiary 20 czerwca w dwóch mrozowiskach, Litworowym Kotle i Mułowym Kotle. Należą one do masywu Czerwonych Wierchów w Tatrach Zachodnich. O ile na przykład w Alpach tego typu miejsc jest dużo, to Czerwone Wierchy są jedynym miejscem w Tatrach, gdzie woda znajduje odpływ w systemie szczelin, więc istnieją suche kotły, w których może gromadzić się suche powietrze. Mamy tutaj więc do czynienia z przyziemną inwersją radiacyjnej wzmacnianą efektem orograficznym, spowodowanym ukształtowaniem terenu. Inwersja zaś działa tym lepiej, im mniej wilgoci w powietrzu i przy braku chmur. Kotły w masywie Czerwonych Wierchów są zaś położone wyżej nad poziomem morza od innych mrozowisk w Polsce i dlatego właśnie są tak interesujące dla poszukujących najniższych letnich temperatur.
      „Łowcy Mrozu” nie poszukują niskich temperatur jedynie latem. Mają nadzieję, że zimą również odnotują rekordy. Obecnie polski rekord zimna wynosi -40,6 stopni Celsjusza i odnotowano go w Żywcu w 1929 roku.
      Naukowcy nie poprzestają na odnotowywaniu rekordów. Chcą zbadać mikroklimat mrozowisk tatrzańskich w masywie Czerwonych Wierchów. Ich pracę można wesprzeć na Zrzutce.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...