Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Po erupcji Hunga Tonga powstała gigantyczna 90-metrowa fala

Recommended Posts

Koleje badania pokazują, jak potężna była erupcja wulkanu Hunga Tonga-Hunga Ha’apai ze stycznia 2022 roku. Nie od dzisiaj wiemy, że była to największa erupcja wulkaniczna obserwowana bezpośrednio przez naukę, a do atmosfery trafiło wyjątkowo dużo wody. Międzynarodowy zespół naukowy poinformował, że w wyniku erupcji woda została początkowo wypiętrzona na wysokość 90 metrów. To wielokrotnie więcej niż największe fale powstałe po trzęsieniach ziemi.

Wybuchy wulkanów rzadko wywołują tsunami, czego nie można powiedzieć o trzęsieniach ziemi. W 2011 roku w wyniku trzęsienia ziemi Tohoku pojawiła się fala tsunami, która zabiła 20 000 osób i uszkodziła elektrownię w Fukushimie. W 1960 roku Chile doświadczyło najpotężniejszego z zarejestrowanych trzęsień ziemi, któremu nadano nazwę Valdivia. W obu przypadkach początkowa fala tsunami miała około 10 metrów. Fale te przyniosły duże zniszczenia. Na szczęście dla nas, Hunga Tonga-Hunga Ha’apai wybuchł daleko od dużych mas lądowych, a wygenerowana przezeń fala była węższa niż powstała w wyniku trzęsień ziemi.

Eksperci skupieni w International Tsunami Commission mówią, że to wyjątkowe wydarzenie powinno być dzwonkiem alarmowym. Przypominają, że system wykrywania tsunami powodowanego przez wybuchy podwodnych wulkanów jest o 30 lat zapóźniony w porównaniu z systemem ostrzegania przed tsunami powstającym w wyniku trzęsienia ziemia.

Tsunami spowodowane erupcją tego wulkanu zabiło 5 osób i spowodowało zniszczenia na dużą skalę, jednak skutki byłyby bardziej tragiczne, gdyby do erupcji doszło bliżej ludzkich siedzib. Wulkan znajduje się w odległości około 70 kilometrów od stolicy Tonga Nuku'alofa, to znacząco osłabiło falę tsunami, mówi doktor Mohammad Heidarzadeh, sekretarz generalny International Tsunami Commision. To było gigantyczne unikatowe wydarzenie, które pokazuje, że musimy poprawić system wykrywania tsunami pochodzenia wulkanicznego, dodaje.

Badania dotyczące tsunami wywołanego przez Hunga Tonga-Hunga Ha’apai polegały na analizie danych dotyczących zmian ciśnienia atmosferycznego i oscylacji poziomu oceanu w połączeniu z symulacjami komputerowymi, które potwierdzano danymi zebranymi w terenie.

Naukowcy odkryli, że mieliśmy w tym przypadku do czynienia z wyjątkowym tsunami. Zostało ono spowodowane nie tylko przez przemieszczenie wody w wyniku erupcji wulkanicznej, ale też przez wielkie atmosferyczne fale ciśnienia, które wielokrotnie okrążyły  Ziemię. Ten podwójny mechanizm działania doprowadził do powstania tsunami składającego się z dwóch części. Początkowe fale powstały w wyniku powstały w wyniku zmian ciśnienia atmosferycznego, a godzinę później pojawiły się fale wywołane przemieszczeniem wody. Systemy ostrzegania przed tsunami nie wykryły początkowych fal, gdyż skonstruowano je z myślą o rejestrowaniu tsunami powstałego w wyniku przemieszczenia wody, a nie zmian ciśnienia w atmosferze.

Tsunami powstałe w wyniku erupcji Hunga Tonga-Hunga Ha’apai było jednym z niewielu, które obiegło cały świat. Zarejestrowano je na wszystkich oceanach i dużych morzach, od Japonii, przez USA po wybrzeża Morza Śródziemnego.


« powrót do artykułu

Share this post


Link to post
Share on other sites
W dniu 22.08.2022 o 13:22, KopalniaWiedzy.pl napisał:

w wyniku erupcji powstała fala tsunami o początkowej wysokości 90 metrów.

To wymaga korekty. 90metrów mierzyła owszem, ale początkowa fala sejsmiczna, która na taką wysokość wypietrzyła ocean. Tsunami powstaje dopiero wtedy, gdy fala wzbudzona wybuchem wulkanu, trzęsienie ziemi itp, dotrze do strefy brzegowej i tam się spiętrzy. Jakieś tsunami po wybuchu tego wulkanu musiało być , ale nie słyszałem aby archipelag Tonga mierzący średnią wysokość 2 metry został nią trafiony i zatopiony.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zdaniem naukowców z University of Cambridge, wpływ wulkanów na klimat jest mocno niedoszacowany. Na przykład w najnowszym raporcie IPCC założono, że aktywność wulkaniczna w latach 2015–2100 będzie taka sama, jak w latach 1850–2014. Przewidywania dotyczące wpływu wulkanów na klimat opierają się głównie na badaniach rdzeni lodowych, ale niewielkie erupcje są zbyt małe, by pozostawiły ślad w rdzeniach lodowych, mówi doktorantka May Chim. Duże erupcje, których wpływ na klimat możemy śledzić właśnie w rdzeniach, mają miejsce najwyżej kilka razy w ciągu stulecia. Tymczasem do małych erupcji dochodzi bez przerwy, więc przewidywanie ich wpływu na podstawie rdzeni lodowych prowadzi do mocnego niedoszacowania.
      Z badań przeprowadzonych przez Chim i jej zespół wynika, że modele klimatyczne nawet 4-krotnie niedoszacowują chłodzącego wpływu małych erupcji wulkanicznych. Podczas erupcji wulkany wyrzucają do atmosfery związki siarki, które gdy dostaną się do górnych jej partii, tworzą aerozole odbijające światło słoneczne z powrotem w przestrzeń kosmiczną. Gdy mamy do czynienia z tak dużą erupcją jak wybuch Mount Pinatubo w 1991 roku, emisja związków siarki jest tak duża, że spadają średnie temperatury na całym świecie. Takie erupcje zdarzają się rzadko. W porównaniu z gazami cieplarnianymi emitowanymi przez ludzi, wpływ wulkanów na klimat jest niewielki, jednak ważne jest, byśmy dokładnie uwzględnili je w modelach klimatycznych, by móc przewidzieć zmiany temperatur w przyszłości, mówi Chim.
      Chim wraz z naukowcami z University of Exeter, Niemieckiej Agencji Kosmicznej, UK Met Office i innych instytucji opracowali 1000 różnych scenariuszy przyszłej aktywności wulkanicznej, a następnie sprawdzali, co przy każdym z nich będzie działo się z klimatem. Z analiz wynika, że wpływ wulkanów na temperatury, poziom oceanów i zasięg lodu pływającego jest prawdopodobnie niedoszacowany, gdyż nie bierze pod uwagę najbardziej prawdopodobnych poziomów aktywności wulkanicznej.
      Analiza średniego scenariusza wykazała, że wpływ wulkanów na wymuszenie radiacyjne, czyli zmianę bilansu promieniowania w atmosferze związana z zaburzeniem w systemie klimatycznym, jest niedoszacowana nawet o 50%. Zauważyliśmy, że małe erupcje są odpowiedzialny za połowę wymuszenia radiacyjnego generowanego przez wulkany. Indywidualne erupcje tego typu mogą mieć niemal niezauważalny wpływ, ale ich wpływ łączny jest duży, dodaje Chim.
      Oczywiście erupcje wulkaniczne nie uchronią nas przed ociepleniem. Aerozole wulkaniczne pozostają w górnych warstwach atomsfery przez rok czy dwa, natomiast dwutlenek węgla krąży w atmosferze znacznie dłużej. Nawet jeśli miałby miejsce okres wyjątkowo dużej aktywności wulkanicznej, nie powstrzyma to globalnego ocieplenia. To jak przepływająca chmura w gorący słoneczny dzień, jej wpływ chłodzący jest przejściowy, wyjaśnia uczona.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ubiegłoroczna erupcja wulkanu Hunga Tonga była rekordowa pod wieloma względami. Była najpotężniejszą erupcją wulkaniczną obserwowaną bezpośrednio przez naukowców, w jej wyniku do atmosfery trafiło wyjątkowo dużo wody i doszło do początkowego wypiętrzenia oceanu na wysokość 90 metrów. Właśnie dowiedzieliśmy się o kolejnym rekordzie. Okazuje się bowiem, że erupcja wywołała najbardziej intensywne wyładowania atmosferyczne.

      Pomimo tego, że kaldera znajdowała się na głębokości 150 metrów, wulkan wyrzucił gazy i pyły na wysokość 58 kilometrów. W tym pióropuszu doszło do gwałtownych wyładowań elektrycznych. Już doniesienia z pierwszych dni po erupcji mówiły o setkach tysięcy wyładowań. Teraz na łamach Geophysical Review Letters ukazał się artykuł obrazujący, jak bardzo intensywne były to wyładowania.
      Naukowcy mogli je przeanalizować dzięki sieci naziemnych anten obserwujących wyładowania atmosferyczne oraz satelitom GOES-17 i Himawari-8. Okazało się, że w szczytowym momencie, o godzinie 4:53 czasu miejscowego doszło do 2615 wyładowań w ciągu minuty. Nigdy wcześniej nie obserwowano tak intenstywnych wyładowań. Dotychczasowy rekord wynosił 993 tego typu wydarzenia w ciągu minuty. To jednak nie jedyny rekord. Błyskawice obserwowano na wysokościach od 20 do 30 kilometrów. "Nigdy wcześniej nie widzieliśmy wyładowań tak intensywnych i mających miejsce na tak dużej wysokości", mówi jedna z autorek badań,
      Alexa Van Eaton z US Geological Survey. Z obrazów satelitarnych wynika, że wyładowania nie były rozłożone przypadkowo w chmurze pyłu i gazu, ale skupiały się w licznych koncentrycznych pierścieniach.
      Erupcja Hunga Tonga była dla naukowców niezwykłą okazją do lepszego poznania wulkanizmu. Tak wielkie erupcje freatomagmowe – eksplozywne interakcje pomiędzy wodą a magmą – obserwowano dotychczas jedynie w zapisach geologicznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nie od dzisiaj wiemy, że na Wenus są wulkany. Naukowcy spierali się jednak o to, czy nadal są one aktywne. To bardzo istotne pytanie, gdyż Wenus jest planetą bliską Ziemi, miała niegdyś wodę na powierzchni, więc warto odpowiedzieć sobie na pytanie, dlaczego na Ziemi kwitnie życie, podczas gdy na Wenus panują temperatury z piekła rodem. Ustalenie czy wulkany Wenus są aktywne pozwoliłoby nam lepiej określić ewolucję planety. Właśnie poznaliśmy odpowiedź na to pytanie.
      Wczoraj, podczas Lunar and Planetary Science Conference oraz na łamach Science przedstawiono wnioski z analiz obrazów radarowych powierzchni Wenus, uzyskanych przez misję Magellan w latach 1990–1992. Naukowcy zauważyli, że na obszarze Atla Regio, gdzie znajdują się dwa z największych wenusjańskich wulkanów, komin jednego z nich zmienił kształt. Widoczna jest różnica na dwóch obrazach wykonanych w odstępie 8 miesięcy. To zaś sugeruje, że w międzyczasie doszło do erupcji lub wypływu lawy.
      Odkrycie przyszło w samą porę. W czerwcu 2021 roku NASA ogłosiła, że w latach 2028–2030 wyśle dwie misje na Wenus. Będą to pierwsze od ponad 30 lat misje NASA poświęcone wyłącznie tej planecie. Każdej z nich przyznano już finansowanie. W ramach misji DAVINCI+ będzie zbadanie składu atmosfery i sprawdzenie, czy na Wenus istniał ocean. Misja wyśle też próbnik, który wleci w atmosferę planety i dotrze do jej powierzchni. Ma on przysłać pierwsze zdjęcia Wenus w wysokiej rozdzielczości. Z kolei w ramach misji VERITAS wysłany zostanie orbiter, który wykona trójwymiarową rekonstrukcję topografii planety, zbada czy występują tam zjawiska tektoniczne i wulkanizm oraz określi typy skał na powierzchni Wenus.
      Wiadomo jednak, że zdobycie jakichkolwiek danych nie będzie proste. Wenus ma bardzo gęstą atmosferę, panuje na niej ciśnienie 92-krotnie wyższe niż na Ziemi, a temperatury na jej powierzchni sięgają 450 stopni Celsjusza. Takie warunki to olbrzymie wyzwanie dla wszelkich próbników czy łazików.
      Dotychczas najdokładniejszych danych na temat powierzchni planety dostarczyła misja Magellan z lat 1989–1994. W jej trakcie za pomocą radaru trzykrotnie obrazowano te obszary Wenus, na których podejrzewano istnienie aktywnych wulkanów. Za każdym razem obrazy były uzyskiwane pod innym kątem. Ponadto obrazy mają niską rozdzielczość. Stąd też olbrzymie problemy w jednoznacznym stwierdzeniu, czy rzeczywiście widać na nich zmiany komina wulkanicznego. Część specjalistów uważa, że tak. Inni twierdzą, że nie. Spór może ostatecznie rozstrzygnąć misja VERITAS.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zmiany orbity ziemskiej mogły być czynnikiem wyzwalającym gwałtowne ocieplenie klimatu sprzed 56 milionów lat. To paleoceńsko-eoceńskie maksimum termiczne (PETM) jest wydarzeniem geologicznym najbardziej podobnym do zmian klimatycznych, których obecnie doświadczamy. Dlatego też od dawna stanowi przedmiot zainteresowania naukowców.
      Naukowcy z Pennsylvania State University przyjrzeli się rdzeniom z PETM pobranym u wybrzeży stanu Maryland. Datowali je techniką astrochronologii polegającą na kalibrowaniu w odniesieniu do skali czasowej odnoszącej się do zjawisk astronomicznych, na przykład do cykli Milankovicia. Cykle te to okresowe zmiany trzech parametrów orbity ziemskiej: ekscentryczności, precesji i nachylenia ekliptyki. Okres tych zmian jest różny, ale raz na jakiś czas zbiegają się one i były, jak się uważa, dominującym mechanizmem paleoklimatycznym. Być może to właśnie ich zbieg był odpowiedzialny za epoki lodowe.
      Z ostatnich badań przeprowadzonych na Penn State dowiadujemy się, że zmiany ekscentryczności i precesji orbity Ziemi faworyzowały pojawienie się wyższych temperatur. Ten orbitalny wyzwalacz mógł doprowadzić do uwolnienie się węgla, co z kolei skutkowało globalnym ociepleniem znanym jako PETM. Stawiamy taką hipotezę w opozycji do bardziej popularnej interpretacji mówiącej, że PETM został wywołany przez gwałtowny wulkanizm, mówi profesor Lee Kump.
      Analizy pokazały też, że początkowy etap PETM, ten w którym temperatury rosły, trwał około 6000 lat. Wartość ta mieści się w dotychczasowych szacunkach mówiących o kilkuset do dziesiątków tysięcy lat. Jej określenie jest ważne po to, byśmy mogli zrozumieć, jak szybko następowało wówczas globalne ocieplenie. W czasie tych 6000 lat do atmosfery dostało się 10 000 gigaton węgla w postaci CO2 i metanu, co oznacza roczną emisję rzędu 1,5 gigatony. Średnia globalna temperatura wzrosła o około 6 stopni.
      Ówczesne tempo emisji węgla do atmosfery było o około rząd wielkości mniejsze niż obecnie. Emitujemy rocznie od 5 do 10 razy więcej węgla niż w czasie wydarzenia, które 56 milionów lat temu pozostawiło trwały ślad na naszej planecie, dodaje Kump.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Erupcja podwodnego wulkanu Hunga Tonga-Hunga Ha'apai była jednym z najpotężniejszych wydarzeń tego typu w czasach współczesnych oraz największą erupcją obserwowaną przez naukę. Teraz dowiadujemy się, że wyrzuciła ona do atmosfery rekordowo dużo wody. Na tyle dużo, że przejściowo może ona wpłynąć na średnie temperatury na całej planecie. Nigdy czegoś takiego nie widzieliśmy, mówi Luis Millán z Jet Propulsion Laboratory, który wraz z zespołem zbadał ilość wody, jaka po erupcji trafiła do stratosfery.
      Na łamach Geophysical Research Letters Millán i jego koledzy informują, że w wyniku erupcji do stratosfery – warstwy atmosfery znajdującej się na wysokości od 12 do 53 kilometrów – trafiło 146 milionów ton wody. To 10% tego, co już było obecne w stratosferze. Naukowcy przeanalizowali dane z urządzenia MLS (Microwave Limb Sounder), które znajduje się na pokładzie satelity Astra. Bada ono gazy atmosferyczne. Po erupcji Hunga Tonga-Hunga Ha'apai pojawiły się niezwykle wysokie odczyty wartości pary wodnej. Musieliśmy dokładnie sprawdzić wszystkie pomiary, by upewnić się, że możemy im ufać, podkreśla Millán.
      Erupcje wulkanów rzadko dostarczają znaczące ilości wody do stratosfery. NASA prowadzi odpowiednie pomiary od 18 lat i tylko w dwóch przypadkach – w roku 2008 (wulkan Kasatochi) i 2015 (wulkan Calbuco) – odnotowano wyrzucenie przez wulkany dużych ilości wody do stratosfery. Oba te wydarzenia były jednak niczym, w porównaniu z tegoroczną erupcją, w obu przypadkach para wodna szybko zniknęła ze stratosfery. Teraz jednak może być inaczej. Nadmiarowa wilgoć z erupcji Hunga Tonga może pozostać w stratosferze przez lata.
      Dodatkowa para wodna będzie wpływała na procesy chemiczne w atmosferze, czasowo przyczyniając się do zubożenia warstwy ozonowej. Może też wpłynąć na temperatury przy powierzchni. Erupcje wulkaniczne, wyrzucając do atmosfery popiół, pył i różne gazy, zwykle przyczyniają się do przejściowego schłodzenia powierzchni naszej planety. Tymczasem Hunga Tonga nie dostarczył do stratosfery zbyt dużej ilości aerozoli. Natomiast tak duża ilość dodatkowej wody może przejściowo przyczynić się do niewielkiego zwiększenia temperatury na powierzchni planety, gdyż para wodna jest gazem cieplarnianym. Wpływ ten zaniknie, gdyż ta nadmiarowa para zniknie ze stratosfery.
      Millán i jego zespół stwierdzają, że gigantyczna ilość pary wodnej wyrzuconej przez wulkan to wynik „odpowiedniej” głębokości, na jakiej znajdowała się kaldera wulkanu. Nad nią znajdowało się 150 metrów wody. Gdyby kaldera była płycej, wulkan wyrzuciłby mniej wody, gdyby była głębiej, ciśnienie wody spowodowałoby, że erupcja nie wyrzuciłaby jej aż tyle.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...