Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ekologiczne paliwo lotnicze z energii słonecznej, pary wodnej i dwutlenku węgla z powietrza

Rekomendowane odpowiedzi

Madrycki IMDEA Energy Institute we współpracy z Politechniką Federalną w Zurichu (ETH) uruchomił pierwszą na świecie pilotażową instalację słoneczną do produkcji paliwa lotniczego, nafty, z pary wodnej i dwutlenku węgla pozyskiwanych z powietrza. Uruchomienie instalacji to pokłosie badawczej demonstracyjnej rafinerii słonecznej, która ruszyła w 2019 roku na dachu ETH Machine Laboratory.

Znaną alternatywą dla tradycyjnych paliw kopalnych jest produkcja ich z gazu syntezowego, wytwarzanego w procesie syntezy Fischera-Tropscha. Naukowcy z ETH Zurich zauważyli, że do produkcji gazu można wykorzystać metodę termochemiczną napędzaną energią słoneczną. W metodzie tej woda i dwutlenek węgla przechodzą szereg reakcji i powstaje gaz syntezowy.

Teraz, wraz z Hiszpanami, stworzyli prototypową instalację. Składa się ona z wieży koncentrującej promienie słoneczne, reaktora i jednostki zamieniającej gaz na paliwo metodą syntezy Fischera-Tropscha. Na wieży znajduje się podążający za Słońcem heliostat, który koncentruje promienie słoneczne na znajdującym się obok reaktorze. Reaktor ma kształt wnęki wyłożonej ceramicznymi porowatymi strukturami z tlenku ceru (IV). Dzięki skoncentrowanym promieniom słonecznym w reaktorze panuje temperatura około 1500 stopni Celsjusza, co wystarcza, by rozbić przechwycone z atmosfery dwutlenek węgla i parę wodną i wytworzyć z nich gaz syntezowy. Następnie w jednostce zamieniającej gaz w ciecz, powstaje nafta.

Produkowane w ten sposób paliwo jest – pod względem emisji węgla – całkowicie neutralne. Podczas jego spalania do atmosfery trafia tyle węgla, ile zostało z niej wycofane na potrzeby produkcji paliwa. Nasza pilotażowa instalacja to wciąż obiekt demonstracyjny dla celów badawczych. Jest to jednak kompletny obiekt przemysłowy, który jest odpowiedni do implementacji w masowej produkcji. Wytwarzany tutaj syngas jest takiej samej jakości i czystości jak ten powstający z używanej obecnie przemysłowo syntezie Fischera-Tropscha, zauważają autorzy badań.

Efektywność konwersji energii słonecznej na energię gazu syntezowego wynosi tutaj 4,1%, co jest rekordem w dziedzinie termochemicznej produkcji paliw. To jednak wciąż zbyt mało, by technologia ta była konkurencyjna względem innych metod. Już jednak wiadomo, że wynik ten można będzie poprawić. Zmierzona efektywność konwersji została bowiem osiągnięta bez jakiegokolwiek systemu odzyskiwania ciepła opadowego. Tymczasem wiadomo, że w przypadku tego typu reakcji marnuje się ponad 50% energii słonecznej. Część z tej energii można odzyskać. Przeprowadzone przez nas analizy termodynamiczne wskazują, że rozsądnie zaprojektowany system odzyskiwania ciepła pozwoli na zwiększenie efektywności energetycznej systemu do ponad 20%, zapewnia profesor Aldo Steinfeld z ETH, który stał na czele zespołu badawczego.

Obecnie naukowcy pracują nad zoptymalizowaniem ceramicznych elementów reaktora. Kolejnym stojącym przed nimi wyzwaniem będzie przeskalowanie instalacji do produkcji masowej.

Jako, że nowe technologie są znacznie droższe od już wdrożonych, nie należy liczyć na to, że początkowo paliwo lotnicze „z powietrza” będzie tańsze. Profesor Steinfeld uważa, że może ono rozpowszechnić się na rynku, gdy wprowadzone zostaną prawne rozwiązania dotyczące ograniczenia zanieczyszczeń przez przemysł lotniczy. Może to być na przykład wymóg, by do paliw kopalnych dodawać paliwa uzyskiwane bardziej ekologicznymi metodami. Początkowo wymóg taki mógłby dotyczyć niewielkiej domieszki, rzędu 1-2%. To, co prawda, podniosłoby cenę paliwa lotniczego, ale byłaby to podwyżka niezauważalna, rzędu kilku euro na przeciętny lot, mówi Stainfeld. Powolne zwiększanie ilości domieszki prowadziłoby do zwiększanie inwestycji i budowę nowych instalacji do produkcji bezemisyjnego paliwa lotniczego. Zdaniem Stainfelda ekologiczne paliwo lotnicze stałoby się konkurencyjne cenowo do czasu, aż jego obowiązkowe domieszki sięgnęłyby 10–15 procent.

Wszystko wskazuje jednak na to, że na rynkowy debiut nowego paliwa nie trzeba będzie czekać aż tak długo. Z laboratorium Steinfelda wydzielono już komercyjną firmę Synhelion, która w 2023 roku chce rozpocząć budowę pełnoskalowej instalacji przemysłowej i współpracuje z liniami lotniczymi SWISS, które – przynajmniej podczas niektórych lotów – mają używać wyłącznie paliwa wytwarzanego „z powietrza”.

Ze szczegółami można zapoznać się na łamach pisma Joule.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
On 8/4/2022 at 1:30 PM, KopalniaWiedzy.pl said:

Efektywność konwersji energii słonecznej na energię gazu syntezowego wynosi tutaj 4,1%, co jest rekordem w dziedzinie termochemicznej produkcji paliw. To jednak wciąż zbyt mało, by technologia ta była konkurencyjna względem innych metod. Już jednak wiadomo, że wynik ten można będzie poprawić. Zmierzona efektywność konwersji została bowiem osiągnięta bez jakiegokolwiek systemu odzyskiwania ciepła opadowego.

Tak niska efektywność nie jest do pozazdroszczenia tym bardziej, że przedstawiciele Audi już w 2015 roku twierdzili, że opracowali proces produkcji e-diesla z H20, CO2 i energii elektrycznej charakteryzujący się sprawnością równą stosunkowi energii uzyskanej z e-diesla do energii elektrycznej włożonej na poziomie 50%. Przyjmując przeciętną 15% sprawność ogniw fotowoltaicznych uzyskuje się efektywność wykorzystania energii słonecznej do produkcji e-diesla  na poziomie 0,15*50% = 7,5%

Quote
  • The energy return on energy invested (ERoEI) for the process is at best 0.5. For every BTU of e diesel produced about 2 BTUs of electricity are consumed. E diesel is an energy sink or energy conversion where at least 50% of the energy is lost along the way.

http://euanmearns.com/the-thermodynamic-and-economic-realities-of-audis-e-diesel/

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Panele fotowoltaiczne zamontowane na dachach zakładów przemysłowych mogą zaspokoić do 35% zapotrzebowania amerykańskiego przemysłu na energię, informują naukowcy z Nortwestern University. To olbrzymi niewykorzystany potencjał. Obecnie bowiem panele zainstalowane w miejscach działania firm produkcyjnych dostarczają im zaledwie 0,1% energii. Tymczasem przemysł odpowiada za 38% zużycia energii w Stanach Zjednoczonych i 37% emisji gazów cieplarnianych. Potencjał dachów pozostaje niewykorzystany nie tylko zresztą w przemyśle. Instalowane tam panele zapewniłyby 13,6% energii zużywanej w USA, a obecnie wytwarzają zaledwie 2,2% energii.
      Uczeni przedstawili na łamach Environmental Research: Sustainability and Infrastructure wyniki badań nad możliwością pozyskiwania energii słonecznej na własną działalność przez różne gałęzie amerykańskiego przemysłu. Wykorzystali przy tym dane z badań Manufacturing Energy Consumption Survey przeprowadzonych przez Departament Energii. Na ich podstawie wyliczyli potencjalną ilość energii, jaka jest możliwa do pozyskania z paneli słonecznych umiejscowionych na dachu przeciętnego budynku, w którym odbywa się produkcja.
      Z obliczeń wynika, że panele montowane na dachach mogą zapewnić – w zależności od sektora przemysłu i pory roku – od 5 do 35 procent zapotrzebowania na energię. Najbardziej na ich zainstalowaniu zyskałyby przemysły meblarski, tekstylny oraz odzieżowy. Tego typu zakłady są w stanie całkowicie samodzielnie zaspokoić swoje roczne uśrednione zapotrzebowanie na energię z własnych paneli słonecznych.
      Przemysł jest na całym świecie jednym z głównych użytkowników energii i jednym z głównym emitentów gazów cieplarnianych. Nic więc dziwnego, że skupia się na nim wiele wysiłków mających doprowadzić do zmniejszenia emisji gazów cieplarnianych przez ludzi. Naukowcy z Northwestern University wykazali, że instalowanie paneli słonecznych na dachach budynków może być dla firm produkcyjnych opłacalnym sposobem na pozyskanie energii. Przedsiębiorstwa dysponują bowiem dużymi powierzchniami płaskich dachów, na których montowanie paneli słonecznych jest łatwe i tanie, co w obliczu spadających cen ogniw i ich rosnącej wydajności staje się opłacalnym rozwiązaniem. Szczególnie kuszący może być fakt, że wiosną i latem na 40% powierzchni USA panują takie warunki, które wielu znajdującym się tam firmom produkcyjnym pozwoliłyby w 100% zaspokoić zapotrzebowanie na energię z własnych paneli słonecznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Rosnąca popularność samochodów elektrycznych (EV) często postrzegana jako problem dla sieci elektroenergetycznych, które nie są dostosowane do nowego masowego źródła obciążenia. Naukowcy z Uniwersytetu w Lejdzie oraz amerykańskiego Narodowego Laboratorium Energii Odnawialnej podeszli do zagadnienia z innej strony. Z analizy wynika, że w ciągu najbliższych lat EV mogą stać się wielkim magazynem energii ze źródeł odnawialnych, stabilizując energetykę słoneczną i wiatrową.
      Energia z wiatru i słońca to najszybciej rosnące źródła energii. So to jednak źródła niestabilne, nie dostarczają energii gdy wiatr nie wieje, a słońce nie świeci. Z analizy, opublikowanej na łamach Nature Communications, dowiadujemy się, że rolę stabilizatora mogą odegrać samochody elektryczne. Obecnie większość ich właścicieli ładuje samochody w nocy. Autorzy badań uważają, że właściciele takich pojazdów mogliby podpisywać odpowiednie umowy z dostawcami energii. Na jej podstawie dostawca energii sprawowałby kontrolę nad ładowaniem samochodu w taki sposób, by z jednej strony zapewnić w sieci odpowiednią ilość energii, a z drugiej – załadować akumulatory do pełna. Właściciel samochodu otrzymywałby pieniądze za wykorzystanie jego pojazdu w taki sposób, wyjaśnia główny autor badań, Chengjian Xu.
      Co więcej, gdy pojemność akumulatorów zmniejsza się do 70–80 procent pojemności początkowej, zwykle nie nadają się one do zastosowań w transporcie. Jednak nadal przez wiele lat mogą posłużyć do stabilizowania sieci elektroenergetycznych. Dlatego też, jeśli kwestia taka zostanie uregulowana odpowiednimi przepisami, akumulatory takie mogłyby jeszcze długo służyć jako magazyny energii.
      Z wyliczeń holendersko-amerykańskiego zespołu wynika, że do roku 2050 samochody elektryczne oraz zużyte akumulatory mogą stanowić wielki bank energii o pojemności od 32 do 62 TWh. Tymczasem światowe zapotrzebowanie na krótkoterminowe przechowywanie energii będzie wówczas wynosiło od 3,4 do 19,2 TWh. Przeprowadzone analizy wykazały, że wystarczy, by od 12 do 43 procent właścicieli samochodów elektrycznych podpisało odpowiednie umowy z dostawcami energii, a świat zyska wystarczające możliwości przechowywania energii. Jeśli zaś udałoby się wykorzystać w roli magazynu energii połowę zużytych akumulatorów, to wystarczy, by mniej niż 10% kierowców podpisało umowy z dostawcami energii.
      Już w roku 2030 w wielu regionach świata EV i zużyte akumulatory mogą zaspokoić popyt na krótkoterminowe przechowywanie energii.
      Oczywiście wiele tutaj zależy od uregulowań prawnych oraz od tempa popularyzacji samochodów elektrycznych w różnych regionach świata. Autorzy badań zauważają też, że wielką niewiadomą jest tempo degradacji akumulatorów przyszłości, które będzie zależało m.in. od postępu technologicznego, czy też tempo rozwoju systemów zarządzania energią. Nie wiadomo także, czy nie zajdą radykalne zmiany w samym systemie transportowym. Nie można wykluczyć np. zmiany przyzwyczajeń i rozpowszechnienia się komunikacji zbiorowej czy systemów wspólnego użytkowania pojazdów, na dostępność samochodów i akumulatorów może też wpłynąć rozpowszechnienie się pojazdów autonomicznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przestawienie światowego systemu energetycznego na źródła odnawialne będzie wiązało się z większą emisją węgla do atmosfery, gdyż wytworzenie ogniw fotowoltaicznych, turbin wiatrowych i innych urządzeń wymaga nakładów energetycznych. Jednak im szybciej będzie przebiegał ten proces, tym większe będą spadki emisji, ponieważ więcej energii ze źródeł odnawialnych w systemie oznacza, że źródła te będą w coraz większym stopniu napędzały zmianę. Takie wnioski płyną z badań, których autorzy oszacowali koszt zmiany systemu produkcji energii, liczony nie w dolarach, a w emisji gazów cieplarnianych.
      Wniosek z naszych badań jest taki, że do przebudowania światowej gospodarki potrzebujemy energii i musimy to uwzględnić w szacunkach. W jaki sposób by ten proces nie przebiegał, nie są to wartości pomijalne. Jednak im więcej zainwestujemy w początkowej fazie w zieloną energię, w tym większym stopniu ona sama będzie napędzała zmiany, mówi główny autor badań, doktorant Corey Lesk z Columbia University.
      Naukowcy obliczyli jaka będzie emisja gazów cieplarnianych związana z wydobyciem surowców, wytworzeniem, transportem, budowaniem i innymi czynnościami związanymi z tworzeniem farm słonecznych i wiatrowych oraz ze źródłami geotermalnymi i innymi. Do obliczeń przyjęto scenariusz zakładający, że świat całkowicie przechodzi na bezemisyjną produkcję energii.
      Jedne z wcześniejszych badań pokazują, że przestawienie całej światowej gospodarki (nie tylko systemu energetycznego) na bezemisyjną do roku 2050, kosztowałoby 3,5 biliona dolarów rocznie. Z innych badań wynika, że same tylko Stany Zjednoczone musiałyby w tym czasie zainwestować nawet 14 bilionów dolarów.
      Teraz możemy zapoznać się z badaniami pokazującymi, jak duża emisja CO2 wiązałaby się ze zbudowaniem bezemisyjnego systemu produkcji energii.
      Jeśli proces zmian będzie przebiegał w tym tempie, co obecnie – a zatem gdy pozwolimy na szacowany wzrost średniej globalnej temperatury o 2,7 stopnia Celsjusza do końca wieku – to do roku 2100 procesy związane z budową bezemisyjnego systemu produkcji energii będą wiązały się z emisją 185 miliardów ton CO2 do atmosfery. To dodatkowo tyle, ile obecnie ludzkość emituje w ciągu 5-6 lat. Będzie więc wiązało się to ze znacznym wzrostem emisji. Jeśli jednak tworzylibyśmy tę samą infrastrukturę na tyle szybko, by ograniczyć wzrost średniej temperatury do 2 stopni Celsjusza – a przypomnijmy, że taki cel założono w międzynarodowych porozumieniach – to zmiana struktury gospodarki wiązałaby się z emisją dodatkowych 95 miliardów ton CO2 do roku 2100. Moglibyśmy jednak założyć jeszcze bardziej ambitny cel i ograniczyć wzrost globalnej temperatury do 1,5 stopnia Celsjusza. W takim wypadku wiązałoby się to z wyemitowaniem 20 miliardów ton CO2, a to zaledwie połowa rocznej emisji.
      Autorzy badań zastrzegają, że ich szacunki są prawdopodobnie zbyt niskie. Nie brali bowiem pod uwagę emisji związanych z koniecznością budowy nowych linii przesyłowych, systemów przechowywania energii czy zastąpienia samochodów napędzanych paliwami kopalnymi przez pojazdy elektryczne. Skupili się poza tym tylko na dwutlenku węgla, nie biorąc pod uwagę innych gazów cieplarnianych, jak metan czy tlenek azotu. Zauważają też, że zmiana gospodarki wiąże się nie tylko z problemem emisji, ale też z innymi negatywnymi konsekwencjami, jak konieczność sięgnięcia po rzadziej dotychczas używane minerały, których złoża mogą znajdować się w przyrodniczo cennych czy dziewiczych obszarach, zauważają też, że budowa wielkich farm fotowoltaicznych i wiatrowych wymaga zajęcia dużych obszarów, co będzie wpływało na mieszkających tam ludzi oraz ekosystemy.
      Pokazaliśmy pewne minimum. Koszt maksymalny jest zapewne znacznie większy, mówi Lesk. Dodaje, że badania przyniosły zachęcające wyniki. Pokazują bowiem, że im szybciej i więcej zainwestujemy na początku, tym mniejsze będą koszty. Jeśli jednak wielkie inwestycje nie rozpoczną się w ciągu najbliższych 5–10 lat, stracimy okazję do znacznego obniżenia kosztów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Trwający niemal przez cały obecny rok kryzys energetycznych spowodował, że do produkcji energii w większym stopniu zaczęto wykorzystywać węgiel, co spowodowało obawy o znaczne zwiększenie emisji dwutlenku węgla do atmosfery. Emisja rzeczywiście wzrosła w porównaniu z rokiem 2021, ale o mniej niż 1%. To znacznie mniej niż prognozowano i znacznie mniej niż wynosił wzrost ubiegłoroczny. A stało się tak dzięki bardziej intensywnemu użyciu źródeł odnawialnych oraz samochodów elektrycznych.
      Międzynarodowa Agencja Energetyczna (MAE, ang. IEA) poinformowała, że do końca bieżącego roku związana z produkcją energii emisja dwutlenku węgla do atmosfery wzrośnie o niemal 300 milionów ton w porównaniu z rokiem ubiegłym i wyniesie około 33,8 miliarda ton. To znacznie mniej niż wzrost o 2 miliardy ton, który miał miejsce w roku 2021. Za tegoroczny wzrost odpowiada głównie sektor produkcji energii elektrycznej oraz lotnictwa pasażerskiego.
      Analitycy MAE dodają, że tegoroczny wzrost emisji przekroczyłby 1 miliard ton, gdyby nie duże inwestycje w źródła odnawialne i rozpowszechnianie się samochodów elektrycznych. W wyniku rosyjskiej napaści na Ukrainę znacząco wzrosły ceny gazu, co spowodowało, że świat zaczął spalać więcej węgla. Jednak ta zwiększona emisja z węgla została w dużej mierze zniwelowana poprzez szersze użycie źródeł odnawialnych. W wyniku tego nieco poprawiła się światowa średnia emisji na jednostkę wyprodukowanej energii. To bardzo dobry prognostyk, gdyż wskazuje, że pogorszenie się tego wskaźnika w ubiegłym roku – co było spowodowane znacznym wzrostem emisji przy wychodzeniu gospodarki z kryzysu po pandemii – było tylko przejściowe i udało się utrzymać trend zmniejszania emisji na jednostkę energii. To bardzo ważne, gdyż po kryzysie finansowym z 2008 roku wskaźnik emisji na jednostkę wyprodukowanej energii pogarszał się przez wiele lat.
      Globalny kryzys energetyczny spowodowany inwazją Rosji na Ukrainę spowodował, że wiele krajów zaczęło zastępować gaz innymi źródłami energii. Optymistycznym zjawiskiem jest fakt, że energetyka słoneczna i wiatrowa uzupełniły większość niedoborów, dzięki czemu zwiększenie emisji spowodowane wykorzystywaniem węgla wydaje się zjawiskiem niewielkim i przejściowym. To oznacza, że emisja CO2 rośnie znacznie wolniej niż się obawiano i dochodzi do rzeczywistej strukturalnej zmiany w sektorze produkcji energii, komentuje dyrektor MAE Fatih Birol.
      W 2022 roku globalna produkcja mocy ze słońca i wiatru wzrosła w porównaniu z rokiem ubiegłym o ponad 700 TWh. To największy roczny wzrost w historii. Gdyby nie on, emisja CO2 byłaby w bieżącym roku o ponad 600 milionów ton wyższa. Ilość energii pozyskiwanej ze słońca i wiatru rośnie najszybciej w całym sektorze energetycznym. Mimo tego, w niektórych krajach – głównie w Azji – drugim najszybciej rosnącym źródłem energii jest węgiel. Dlatego też w bieżącym roku globalna emisja CO2 z węgla wzrośnie o ponad 200 milionów ton w porównaniu z rokiem ubiegłym.
      W Unii Europejskiej, pomimo zwiększenia zużycia węgla, spodziewany jest spadek emisji. Eksperci sądzą, że wzrost ilości energii wytwarzanej z węgla jest w UE tymczasowy, a w przyszłym roku do europejskiej sieci zostaną podłączone źródła odnawialne o łącznej mocy około 50 GW. W Chinach tegoroczna emisja pozostanie niemal na niezmienionym poziomie. Będzie to spowodowane spowolnieniem gospodarczym, suszą wpływającą na hydroelektrownie oraz przyłączaniem dużych ilości źródeł odnawialnych.
      Obok wspomnianych już hydroelektrowni, które w wielu regionach świata zmniejszyły produkcję energii z powodu suszy, kolejnym niskoemisyjnym źródłem, które dostarczyło mniej energii były elektrownie atomowe. Ich globalna produkcja zmniejszyła się w bieżącym roku o ponad 80 TWh. Za znaczną część niedoborów odpowiadały francuskie elektrownie atomowe, z których ponad połowa była wyłączona przez część roku. To zaś spowodowało zwiększenie produkcji energii z węgla i ropy.
      Analitycy spodziewają się, że w związku ze zmniejszonym wykorzystywaniem gazu emisja CO2 z tego źródła zmniejszy się w bieżącym roku o około 40 milionów ton. Znacząco zwiększył się jednak popyt na ropę naftową, przez co o około 180 milionów ton wzrosła emisja CO2 z tego źródła. Związane jest to przede wszystkim ze znoszeniem ograniczeń w podróżowaniu. Lotnictwo pasażerskie odpowiadało za około 75% wzrostu emisji z ropy naftowej i to pomimo tego, że emituje obecnie o około 20% CO2 mniej niż przed pandemią.
      Specjaliści podkreślają, że niepewność na światowym rynku gazu będzie kształtowała również przyszłoroczne trendy. Jednak zmiany strukturalne i spowodowany nimi spadek emisji CO2 na jednostkę energii są ewidentne. Dlatego też analitycy spodziewają się, że korzystny trend będzie kontynuowany, tym bardziej, że w wielu miejscach na świecie rządzący przyjęli ambitne projekty redukcji emisji. Mowa tutaj o US Inflation Reduction Plan, europejskim Fit for 55, japońskim Green Transformation oraz o ambitnych planach dotyczących czystej energetyki przyjętych przez rządy Chin i Indii.
      Ze szczegółami raportu MAE będziemy mogli zapoznać się w przyszłym tygodniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba (JWST) zdobył pierwsze pewne dowody na obecność dwutlenku węgla w atmosferze egzoplanety. CO2 znaleziono w atmosferze gazowego olbrzyma znajdującego się w odległości 700 lat świetlnych od Ziemi. Odkrycie daje nadzieję, że Webb będzie w stanie wykryć i zmierzyć poziom dwutlenku węgla w atmosferach mniejszych podobnych do Ziemi planet skalistych.
      Planeta, o której mowa, to WASP-39b, gazowy olbrzym o masie niemal czterokrotnie mniejszej od masy Jowisza, za to o średnicy o 30% większej. Tak niska masa w porównaniu z tak dużą objętością jest częściowo spowodowana wysokimi temperaturami planety, sięgającymi 900 stopni Celsjusza. WASP-39 znajduje się 8-krotnie bliżej swojej gwiazdy niż Merkury Słońca. Obiega ją w ciągu zaledwie 4 ziemskich dni.
      Gazowy gigant został odkryty w 2011 roku, a dzięki teleskopom Hubble'a i Spitzera wiemy, że w jej atmosferze znajduje się para wodna, sód i potas. Dzięki niezwykłej czułości Webba w podczerwieni dowiedzieliśmy się właśnie o obecności CO2.
      Odkrycia dokonano dzięki urządzeniu NIRSpec (Near-Infrared Spectrograph). Zarejestrował on światło macierzystej gwiazdy przechodzące przez atmosferę planety. Jako, że różne gazy pochłaniają fale światła o różnej długości, analizując spektrum docierającego do nas światła możemy dowiedzieć się, jakie molekuły obecne są w atmosferze. Webb zarejestrował spadek ilości docierającego światła w zakresie pomiędzy 4,1 a 4,6 mikrometrów. W ten sposób zdobyliśmy pierwszy jednoznaczny dowód na obecność dwutlenku węgla w atmosferze planety poza Układem Słonecznym.
      To bardzo ważne wydarzenie, będącym dowodem na czułość instrumentów Webba i możliwości całego teleskopu. Dotychczas bowiem nie dysponowaliśmy narzędziem, które pozwalałoby na rejestrowanie tak subtelnych zmian w spektrum pomiędzy 3 a 5,5 mikrometra w atmosferach egzoplanet. A to jest właśnie najbardziej interesujący nas zakres, gdyż w nim znajdują się pasma absorpcji takich gazów jak para wodna, metan czy właśnie dwutlenek węgla. Skoro zaś Webb udowodnił, że potrafi rejestrować te sygnały, powinien być w stanie zarejestrować je również w przypadku mniejszych skalistych planet. A obecność w ich atmosferach wody, metanu czy dwutlenku węgla może wskazywać na możliwość istnienia życia.
      Ponadto analiza składu atmosfery zdradza wiele istotnych informacji na temat pochodzeniu i ewolucji planet. Mierząc dwutlenek węgla możemy stwierdzić, jaki był stosunek gazów i materiału stałego podczas formowania się planety. W nadchodzącej dekadzie JWST dokona wielu podobnych pomiarów na różnych planetach. Dzięki temu dowiemy się, jak powstają planety i na ile unikatowy jest Układ Słoneczny, mówi Mike Line z Arizona State University.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...