-
Similar Content
-
By KopalniaWiedzy.pl
Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.
« powrót do artykułu -
By KopalniaWiedzy.pl
Troje astronomów – José Luis Bernal, Gabriela Sato-Polito i Marc Kamionkowski – uważa, że sonda New Horizons mogła zarejestrować rozpadające się cząstki ciemnej materii. Uważają oni, że niespodziewany nadmiar światła zarejestrowany przez sondę, może pochodzić z rozpadających się aksjonów, hipotetycznych cząstek ciemnej materii.
Na optyczne promieniowanie tła składa się całe światło widzialne emitowane przez źródła znajdujące się poza Drogą Mleczną. Światło to może nieść ze sobą istotne informacje na temat struktury wszechświata. Problem w badaniu tego światła polega na trudności w jego odróżnieniu od światła, którego źródła znajdują się znacznie bliżej, szczególnie od światła Słońca rozproszonego na pyle międzyplanetarnym.
Wystrzelona w 2006 roku sonda New Horizons znajduje się obecnie w Pasie Kuipera. Pył międzyplanetarny jest tam znacznie bardziej rozproszony niż bliżej Słońca. Niedawno sonda użyła instrumentu o nazwie Long Range Reconnaissance Imager (LORRI) do pomiaru światła. Ku zdumieniu specjalistów okazało się, że optyczne promieniowanie tła jest dwukrotnie bardziej jasne, niż należałoby się spodziewać z ostatnich badań dotyczących rozkładu galaktyk.
Astronomowie z Uniwersytetu Johnsa Hopkinsa uważają, że ten nadmiar światła może pochodzić z rozpadu aksjonów. Uczeni, chcąc wyjaśnić wyniki obserwacji LORRI, zbadali model, w którym aksjony rozpadałyby się do fotonów. Obliczyli, jak rozkładałaby się energia fotonów z takiego rozpadu i w jaki sposób przyczyniałoby się to zarejestrowania nadmiarowego światła przez LORRI. Wyniki sugerują, że nadmiar fotonów mógłby pochodzić z aksjonów o masie mieszczącym się w zakresie 8–20 eV/c2. Powinny one dawać wyraźny sygnał w przyszłych pomiarach intensywności światła.
« powrót do artykułu -
By KopalniaWiedzy.pl
„Niemożliwy” unipolarny (jednobiegunowy) laser zbudowany przez fizyków z University of Michigan i Universität Regensburg może posłużyć do manipulowania kwantową informacją, potencjalnie zbliżając nas do powstania komputera kwantowego pracującego w temperaturze pokojowej. Laser taki może też przyspieszyć tradycyjne komputery.
Światło, czyli promieniowanie elektromagnetyczne, to fala oscylująca pomiędzy grzbietami a dolinami, wartościami dodatnimi a ujemnymi, których suma wynosi zero. Dodatni cykl fali elektromagnetycznej może przesuwać ładunki, jak np. elektrony. Jednak następujący po nim cykl ujemny przesuwa ładunek w tył do pozycji wyjściowej. Do kontrolowania przemieszania informacji kwantowej potrzebna byłaby asymetryczna – jednobiegunowa – fala światła. Optimum byłoby uzyskanie całkowicie kierunkowej, unipolarnej „fali”, w której występowałby tylko centralny grzbiet, bez oscylacji. Jednak światło, jeśli ma się przemieszczać, musi oscylować, więc spróbowaliśmy zminimalizować te oscylacje, mówi profesor Mackillo Kira z Michigan.
Fale składające się tylko z grzbietów lub tylko z dolin są fizycznie niemożliwe. Dlatego też naukowcy uzyskali falę efektywnie jednobiegunową, która składała się z bardzo stromego grzbietu o bardzo wysokiej amplitudzie, któremu po obu stronach towarzyszyły dwie rozciągnięte doliny o niskiej amplitudzie. Taka konstrukcja powodowała, że grzbiet wywierał silny wpływ na ładunek, przesuwając go w pożądanym kierunku, a doliny były zbyt słabe, by przeciągnąć go na pozycję wyjściową.
Taką falę udało się uzyskać wykorzystując półprzewodnik z cienkich warstw arsenku galu, w którym dochodzi do terahercowej emisji dzięki ruchowi elektronów i dziur. Półprzewodnik został umieszczony przed laserem. Gdy światło w zakresie bliskiej podczerwieni trafiło w półprzewodnik, doszło do oddzielenia się elektronów od dziur. Elektrony poruszyły się w przód. Następnie zostały z powrotem przyciągnięte przez dziury. Gdy elektrony ponownie łączyły się z dziurami, uwolniły energię, którą uzyskały z impulsu laserowego. Energia ta miała postać silnego dodatniego półcyklu w zakresie teraherców, przed i po którym przebiegał słaby, wydłużony półcykl ujemny.
Uzyskaliśmy w ten sposób zadziwiającą unipolarną emisję terahercową, w którym pojedynczy dodatni półcykl był czterokrotnie wyższy niż oba cykle ujemne. Od wielu lat pracowaliśmy nad impulsami światła o coraz mniejszej liczbie oscylacji. Jednak możliwość wygenerowania terahercowych impulsów tak krótkich, że efektywnie składały się z mniej niż pojedynczego półcyklu oscylacji była czymś niewyobrażalnym, cieszy się profesor Rupert Hubner z Regensburga.
Naukowcy planują wykorzystać tak uzyskane impulsy do manipulowania elektronami w materiałach kwantowych w temperaturze pokojowej i badania mechanizmów kwantowego przetwarzania informacji. Teraz, gdy wiemy, jak uzyskać unipolarne terahercowe impulsy, możemy spróbować nadać im jeszcze bardziej asymetryczny kształt i lepiej przystosować je do pracy z kubitami w półprzewodnikach, dodaje doktorant Qiannan Wen.
« powrót do artykułu -
By KopalniaWiedzy.pl
Teleskop Webba zarejestrował pierwsze fotony. Z powodzeniem przebyły one całą drogę przez układ optyczny i trafiły do NIRCam. To jedno z najważniejszych osiągnięć zaplanowanego na trzy miesiące etapu dostrajania teleskopu. Dotychczas uzyskane wyniki odpowiadają oczekiwaniom i naziemnym symulacjom.
NIRCam to działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona zarejestruje światło z pierwszych gwiazd i galaktyk, pokaże gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Koronografy blokują światło jasnego obiektu, uwidaczniając obiekty słabo świecące. Dzięki nim astronomowie chcą dokładnie obserwować planety krążące wokół pobliskich gwiazd i poznać ich charakterystyki. NIRCam wyposażono w dziesięć czujników rtęciowo-kadmowo-telurkowych, które są odpowiednikami matryc CCD ze znanych nam aparatów cyfrowych. To właśnie NIRCam jest wykorzystywana do odpowiedniego ustawienia zwierciadła webba.
Żeby zwierciadło główne teleskopu działało jak pojedyncze lustro trzeba niezwykle precyzyjnie ustawić względem siebie wszystkie 18 tworzących je segmentów. Muszę one do siebie pasować z dokładnością do ułamka długości fali światła, w przybliżeniu będzie to ok. 50 nanometrów.
Teraz, gdy zwierciadło jest rozłożone, a instrumenty włączone, rozpoczęliśmy wieloetapowy proces przygotowywania i kalibrowania teleskopu. Będzie on trwał znacznie dłużej niż w przypadku innych teleskopów kosmicznych, gdyż zwierciadło główne Webba składa się z 18 segmentów, które muszą działać jak jedna wielka powierzchnia, wyjaśniają eksperci z NASA.
Najpierw trzeba ustawić teleskop względem jego platformy nośnej. Wykorzystuje się w tym celu specjalne systemy śledzenia gwiazd. Obecnie położenie platformy nośnej i segmentów lustra względem gwiazd nie jest ze sobą zgodne. Dlatego też wybrano jedną gwiazdę, jest nią HD 84406, względem której całość będzie ustawiana.
Każdy z 18 segmentów zwierciadła rejestruje obraz tej gwiazdy, a jako że są one w różny sposób ustawione, na Ziemię trafią różne niewyraźne obrazy. Obsługa naziemna będzie następnie poruszała każdym z segmentów z osobna, by określić, który z nich zarejestrował który z obrazów. Gdy już to będzie wiadomo, segmenty będą obracane tak, by wszystkie z uzyskanych obrazów miały podobny wspólny punkt. Stworzona w ten sposób „macierz obrazów” zostanie szczegółowo przeanalizowana.
Wówczas rozpocznie się drugi etap ustawiania zwierciadła, w ramach którego zredukowane zostaną największe błędy ustawienia. Najpierw obsługa poruszy nieco zwierciadłem wtórnym, co dodatkowo zdeformuje obrazy uzyskiwane z poszczególnych segmentów. Dzięki temu możliwe będzie przeprowadzenie analizy matematycznej, która precyzyjnie określi błędy w ułożeniu każdego z segmentów. Po skorygowaniu tych błędów otrzymamy 18 dobrze skorygowanych ostrych obrazów.
W kolejnym etapie położenie każdego z segmentów lustra będzie zmieniane tak, by generowany przezeń obraz trafił dokładnie do środka pola widzenia teleskopu. Każdy z 18 segmentów został przypisany do jednej z trzech grup (oznaczonych jako A, B i C), więc ten etap prac będzie wykonywany w grupach.
Po zakończeniu trzeciego etapu będziemy już mieli jeden obraz, jednak będzie to nadal obraz uzyskany tak, jakbyśmy nałożyli na siebie obrazy z 18 różnych teleskopów. Zwierciadło główne wciąż nie będzie działało jak jedno lustro. Rozpocznie się, przeprowadzany trzykrotnie, etap (Coarse Phasing) korygowania ustawienia segmentów lustra względem siebie. Po każdej z trzech części tego etapu ustawienia będą sprawdzane i korygowane za pomocą specjalnych elementów optycznych znajdujących się wewnątrz NIRCam (Fine Phasing). W jego trakcie obraz z poszczególnych zwierciadeł celowo będzie ustawiany poza ogniskową i prowadzone będą analizy zniekształceń. Ten ostatni proces superprecyzyjnej korekty ustawień będzie zresztą przeprowadzany rutynowo podczas całej pracy Webba.
Gdy już teleskop zostanie odpowiednio ustawiony, rozpocznie się etap dostrajania pozostałych trzech instrumentów naukowych. Wyłapane zostaną ewentualne błędy i niedociągnięcia, a specjalny algorytm pokaże, jakich poprawek trzeba dokonać. W końcu, w ostatnim etapie prac, obsługa naziemna osobno sprawdzi jakość obrazu uzyskiwanego dzięki każdemu z segmentów zwierciadła głównego i usunie ewentualne błędy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na University of Central Florida powstał pierwszy w historii oscyloskop optyczny. Urządzenie może zrewolucjonizować technologie komunikacyjne, od smartfonów po internet. Skonstruowane na UCF urządzenie mierzy pole elektryczne światła zamieniając oscylacje światła w sygnał elektryczny.
Dotychczas pomiary pola elektrycznego światła były poważnym problemem ze względu na olbrzymie tempo jego oscylacji. Najbardziej zaawansowane techniki pomiarowi, wykorzystywane w urządzeniach elektronicznych i telekomunikacyjnych, pozwalają na pomiar częstotliwości rzędu gigaherców. Pokrywa to spektrum radiowe i mikrofalowe promieniowania elektromagnetycznego. Jednak światło oscyluje ze znacznie większa częstotliwością. Możliwe jest więc upakowanie w nim znacznie większej ilości informacji niż robimy to obecnie. Jednak nie dysponujemy narzędziami, które by to umożliwiały. Obecne oscyloskopy dokonują uśrednionych pomiarów w ramach impulsu światła. Nie potrafią odróżnić poszczególnych dolin i grzbietów fali. Gdybyśmy zaś byli w stanie mierzyć pojedyncze doliny i grzbiety, moglibyśmy kodować w nich informacje
Dzięki włóknom optycznym możemy korzystać ze światła do przesyłania informacji, ale wciąż jesteśmy ograniczeni prędkością oscyloskopów, mówi profesor Michael Chini. Nasz oscyloskop optyczny może zwiększyć prędkość przekazywania informacji nawet o około 10 000 razy.
Uczeni z Florydy zbudowali swoje urządzenie i zaprezentowali jego możliwości dokonując w czasie rzeczywistym pomiarów pól elektrycznych indywidualnych impulsów światła laserowego. W kolejnym etapie badań będą chcieli sprawdzić, gdzie leży nieprzekraczalna granica prędkości pomiaru przy wykorzystaniu ich techniki.
Swoje badania naukowcy opisali na łamach Nature Photonics.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.