Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

NASA pokazała kolejne zdjęcia wykonane przez Teleskop Webba

Recommended Posts

W nocy z poniedziałku na wtorek NASA pokazała pierwsze pełnokolorowe zdjęcie z Teleskopu Kosmicznego Jamesa Webba. Zobaczyliśmy na nim oddaloną o 4,6 miliarda lat świetlnych gromadę galaktyk SMACS 0723. Jej grawitacja zagina światło z obiektów znajdujących się poza gromadą, powiększając je, dzięki czemu możemy zajrzeć jeszcze głębiej w przestrzeń kosmiczną. Teraz NASA zaprezentowała kolejne zdjęcia.

Możemy więc zobaczyć Mgławicę Carina, jedną z największych i najjaśniejszych mgławic. Znajduje się ona w odległości około 7600 lat świetlnych od Ziemi, w Gwiazdozbiorze Carina. Mgławica Carina jest domem licznych masywnych gwiazd, wielokrotnie większych od Słońca. Widoczne na zdjęciu „góry” i „wąwozy” to krawędź regionu gwiazdotwórczego NGC 3324. Najwyższe „szczyty” mają tutaj około 7 lat świetlnych długości. Webb pokazał miejsca narodzin gwiazd oraz same gwiazdy, których nie było widać w świetle widzialnym.

Webb pokazał nam też Mgławicę Pierścień Południowy, zwaną też Rozerwaną Ósemką. To mgławica planetarna, rozszerzająca się chmura gazu, która otacza umierającą gwiazdę. Rozerwana Ósemka znajduje się w odległości około 2000 lat świetlnych od Ziemi i ma średnicę niemal pół roku świetlnego.

Teleskop Webba jest pierwszym instrumentem, który pokazał nam słabiej świecącą gwiazdę znajdującą się wewnątrz Mgławicy Pierścień Południowy. To właśnie ta gwiazda, z której od tysięcy lat wydobywają się pył i gaz, utworzyła mgławicę. Webb umożliwi astronomom dokładne badanie mgławic planetarnych. Krajobraz jest zdominowany przez dwie gwiazdy krążące wokół siebie po ciasnej orbicie. Gwiazdy te wpływają na rozkład gazu i pyłu rozprzestrzeniającej się z jednej z nich, tworząc nieregularne wzory.

Na kolejnym zdjęciu widzimy Kwintet Stephana, pierwszą kompaktową grupą galaktyk jaką poznała ludzkość. Odkryty on został w 1877 roku. Cztery z pięciu tworzących go galaktyk jest ze sobą powiązanych grawitacyjne. Kwintet Stephana znajduje się w odległości 290 milionów lat świetlnych od nas.

Kwintet Stephana to największy z dotychczasowych obrazów dostarczonych przez Webba. Składa się on z ponad 150 milionów pikseli i został złożony z niemal 1000 zdjęć. Webb sfotografował nawet fale uderzeniowe wstrząsające kwintentem w wyniku przechodzenia przez niego jednej z galaktyk, NGC 7318B.

Mimo że struktura zwana jest kwintetem, to tylko cztery galaktyki (NGC 7317, NGC 7318A, NGC 7318B i NGC 7319) są powiązane grawitacyjnie i znajdują się 290 milionów lat świetlnych od nas. Piąta z nich, NGC 7320, znajduje się w odległości 40 milionów lat świetlnych od Ziemi.

Teleskop dostarczył też obraz spektroskopowy planety WASP-96b. To gorący gazowy olbrzym oddalony o 1150 lat świetlnych od Ziemi. Okrąża swoją gwiazdę w 3,4 doby i ma masę o połowę mniejszą od masy Jowisza. Dane potwierdzają obecność wody w atmosferze WASP 96b, naukowcy zaobserwowali w nich dowody na obecność mgły oraz chmur, których nie widzieliśmy podczas wcześniejszych obserwacji. Dokładniejsza analiza danych pozwoli na okreslenie ilości pary wodnej, węgla, tlenu oraz ocenę zmian temperatury atmosfery w zależności od jej wysokości nad planetą.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Odpowiedź na tytułowe pytanie brzmi: tak. Jednak „prawdziwe” w odniesieniu do fotografowanych przez Webba obiektów nie oznacza tutaj takie, jak byśmy zobaczyli je na własne oczy będąc w miejscu Webba, ale takie, jakimi są w rzeczywistości. Żeby to zrozumieć, musimy co nieco wiedzieć o działaniu ludzkiego wzroku oraz Teleskopu Kosmicznego Jamesa Webba (JWST).
      Gdy jesteśmy na ulicy i słyszymy zbliżającą się do nas karetkę pogotowia jadącą na sygnale, zauważymy, że dźwięk jest coraz wyższy, a gdy samochód nas minie, staje się coraz niższy. Fala dźwiękowa zbliżającego się do nas źródła sygnału staje się coraz krótsza, a wydłuża się, gdy źródło sygnału się od nas oddala. Takie samo zjawisko ma miejsce w przypadku fali elektromagnetycznej. Wszechświat się rozszerza, więc – generalnie rzecz biorąc – galaktyki i gwiazdy się od nas oddalają. Długość fali biegnącego w naszym kierunku światła staje się coraz większa, światło to staje się coraz bardziej czerwone. A im bardziej odległy od nas obiekt, tym bardziej czerwone światło do nas dociera. Mówimy tutaj o zjawisku przesunięcia ku czerwieni.
      Ludzie widzą światło o ograniczonym zakresie długości fali. Odległość pomiędzy Ziemią a większością obiektów we wszechświecie jest tak duża, że docierające do nas fale świetlne znajdują się w zakresie podczerwieni, którego nasze oczy nie widzą. Jednak Teleskop Webba jest wyspecjalizowany właśnie w odbieraniu podczerwieni. Dlatego możemy dojrzeć dzięki niemu bardzo stare, niezwykle odległe obiekty.
      JWST korzysta z trzech zwierciadeł. Największe, główne, odpowiada za zbieranie światła docierającego do teleskopu. Zwierciadło główne skupie je i kieruje do zwierciadła wtórnego, stamtąd zaś światło trafia do instrumentów naukowych, a trzecie ze zwierciadeł koryguje wszelkie zniekształcenia wywołane przez dwa pierwsze. Teleskop Webba korzysta ze specjalnej perforowanej maski, która blokuje część docierającego doń światła, symulując działanie wielu teleskopów, dzięki czemu może zwiększyć rozdzielczość. Technika ta pozwala na zdobycie większej ilości danych na temat bardzo jasnych sąsiadujących ze sobą obiektów. Webba wyposażono też w spektrografy, które rozbijają światło na części składowe, ujawniając informacje o intensywności poszczególnych fali światła. Obserwatorium wyposażono też macierz 248 000 mikromigawek służących do pomiaru spektrum światła.
      Za dostarczenie nam obrazu odpowiedzialny jest Zintegrowany Moduł Instrumentów Naukowych, w skład którego wchodzą trzy urządzenia. NIRCam, działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona rejestruje światło z pierwszych gwiazd i galaktyk, pokazuje gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Drugim z nich jest NIRSpec, spektrograf również działający w zakresie od 0,6 do 5 mikrometrów. Spektrografy to urządzenia do rejestracji całego widma promieniowania. Analiza tego widma pozwoli naukowcom poznać wiele cech fizycznych badanego obiektu, w tym jego temperaturę, masę i skład chemiczny. Wiele z obiektów, które Webb będzie badał, jest tak słabo widocznych, że olbrzymie zwierciadło teleskopu będzie musiało prowadzić obserwacje przez setki godzin, by zebrać ilość światła wystarczającą do stworzenia całego widma. Natomiast Mid-Infared Instrument (MIRI) składa się zarówno z kamery jak i spektrografu pracujących w średniej podczerwieni. To zakresy od 5 do 28 mikrometrów. Fal o takiej długości nasze oczy nie widzą. Ten bardzo czuły instrument zobaczy przesunięte ku czerwieni światło odległych galaktyk, tworzących się gwiazd i słabo widocznych komet. Może obserwować Pas Kuipera. Kamer MIRI będzie zdolna do wykonania podobnych szerokokątnych zdjęć, z jakich zasłynął Hubble. A jego spektrograf umożliwi poznanie wielu cech fizycznych odległych obiektów.
      Wszystkie wymienione tutaj instrumenty dostarczają naukowcom danych, które należy odpowiednio dostosować tak, by nasze oczy mogły je zobaczyć. Obrazów z Webba, które udostępnia NASA, nie moglibyśmy zobaczyć będąc w miejscu teleskopu, zarówno dlatego, że nasze oczy nie odbierają światła o takiej długości fali, jak i dlatego, że Webb jest znacznie bardziej czuły na światło. Zatem obrazy przekazywane przez Webba bardziej odpowiadają rzeczywistości, są bardziej prawdziwe, niż to, co możemy zobaczyć na własne oczy. Teleskop korzysta z aż 27 filtrów rejestrujących fale podczerwone o różnej długości. Naukowcy dokładnie analizują te fale, zbierają informacje np. o ich intensywności, a następnie każdej z nich przypisują falę o długości z zakresu światła widzialnego. Najkrótszym przypisywana jest barwa niebieska, dłuższym zielona, najdłuższym czerwona. Po złożeniu tak otrzymany obrazów należy przeprowadzić jeszcze balans, bieli, skorygować kontrast oraz kolory i podziwiać niezwykłe zdjęcia.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Centrum Badań Kosmicznych PAN zakończyła się budowa modelu inżynierskiego instrumentu GLOWS (GLObal solar Wind Structure). GLOWS to fotometr, który będzie liczył fotony odpowiadające długości fali promieniowania Lyman-α (121,56 nm). Zostanie on zainstalowany na pokładzie sondy kosmicznej IMAP (The Interstellar Mapping and Acceleration Probe), która rozpocznie swoją misję w 2025 roku.
      Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.
      Polski GLOWS będzie jednym z 10 instrumentów naukowych znajdujących się na pokładzie IMAP. Jego oś optyczna będzie odchylona o 75 stopni od osi obrotu satelity. Wraz z obrotem IMAP GLOWS będzie skanował okrąg, który codziennie będzie się przesuwał wraz ze zmianą orientacji całego IMAP. W ramach przygotowania eksperymentu zaprojektowaliśmy cały przyrząd: układ optyczny, elektronikę, system zasilania elektrycznego, oprogramowanie do zbierania danych na pokładzie i ich transmisji na Ziemię oraz koncepcję systemu przetwarzania danych na Ziemi, informuje profesor Maciej Bzowski, szef zespołu GLOWS.
      Zbudowaliśmy komputerowy model poświaty heliosferycznej, zbadaliśmy tło pozaheliosferyczne oczekiwane w eksperymencie, zidentyfikowaliśmy i wprowadziliśmy do modelu znane źródła astrofizyczne promieniowania Lyman-alfa, zbudowaliśmy listę gwiazd, które posłużą do kalibracji przyrządu. Zbudowaliśmy też prototyp GLOWS i uruchomiliśmy go w warunkach laboratoryjnych. Wreszcie sprawdziliśmy, że przyrząd widzi promieniowanie Lyman-alfa, które ma obserwować w kosmosie. Oznacza to, że zarejestrowaliśmy pierwsze światło, dodaje uczony.
      GLOS to pierwszy całkowicie polski instrument i eksperyment przygotowany na misję NASA. Otrzymaliśmy możliwość zarówno zaplanowania eksperymentu, zbudowania absolutnie własnego przyrządu i śledzenia rejestrowanych przez niego danych. Sądzę też, że jako pierwsi będziemy mogli przedstawić własne wyniki tych unikatowych pomiarów. Jesteśmy przekonani, że wkrótce po tym przedstawimy na forum międzynarodowym potwierdzenie naszych teorii które, były inspiracją tego kluczowego eksperymentu, podkreśliła profesor Iwona Stanisławska, dyrektor CBK PAN.
      Przed trzema miesiącami dokonano Critical Design Review instrumentu. Obok Polaków wzięli w nim udział m.in. eksperci z NASA, Uniwersytetu Johnsa Hopkinsa i Southwest Research Institute. Przegląd wypadł pomyślnie, co oznacza, że wydano zgodę na rozpoczęcie budowy właściwego urządzenia, które poleci w kosmos.
      Prace przy GLOWS pozwalają naszym naukowcom zdobyć cenne doświadczenie i umiejętności. Mogą one skutkować otwarciem w Polsce nowych perspektyw badawczych. Obserwacje satelitarne w zakresie UV to wciąż nowatorska i przyszłościowa dziedzina badań kosmosu. Unikatowe doświadczenia i bardzo specjalistyczna infrastruktura techniczna, w obu przypadkach zdobyte w trakcie realizacji GLOWS, stanowią doskonałą podstawę do realizacji w Polsce przyszłych misji satelitarnych. Tym bardziej, że obserwacje w zakresie UV proponuje szereg ważnych ośrodków naukowych, również polskich, wyjaśnia doktor habilitowany Piotr Orleański, zastępca dyrektora CBK PAN ds. rozwoju technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) dostarczył pierwszy w historii pełny profil molekularny i chemiczny atmosfery planety pozasłonecznej. Inne teleskopy przekazywały już wcześniej dane dotyczące pojedynczych składników atmosfer, jednak dzięki Webbowi poznaliśmy wszystkie atomy, molekuły, a nawet aktywne procesy chemiczne obecne w atmosferze odległej planety. Przekazane dane dają nam nawet wgląd w ukształtowanie chmur, dowiedzieliśmy się, że są one pofragmentowane, a nie pokrywają planety nieprzerwaną warstwą.
      Przekazane informacje dotyczą atmosfery planety WASP-39b, na której trenowano instrumenty Webba. To gorący saturn, zatem planeta o masie dorównującej Saturnowi, ale znajdująca się na orbicie bliższej gwiazdy niż Merkury. WASP-39b oddalona jest od Ziemi o około 700 lat świetlnych.
      Natalie Batalha z University of California w Santa Cruz (UC Santa Cruz), która brała udział w koordynacji badań, mówi, że dzięki wykorzystaniu licznych instrumentów Webba działających w podczerwieni udało się zdobyć dane, które dotychczas były dla ludzkości niedostępne. Możliwość uzyskania takich informacji całkowicie zmienia reguły gry, stwierdza uczona.
      Badania zaowocowały przygotowaniem pięciu artykułów naukowych, z których trzy są właśnie publikowane, a dwa recenzowane.
      Jednym z bezprecedensowych odkryć dokonanych przez Webba jest zarejestrowanie obecności dwutlenku siarki, molekuły powstającej w wyniku reakcji chemicznych zapoczątkowywanych przez wysokoenergetyczne światło docierające od gwiazdy macierzystej. Na Ziemi w podobnym procesie powstaje ochronna warstwa ozonowa.
      Po raz pierwszy w historii mamy dowód na reakcję fotochemiczną na egzoplanecie, mówi Shang-Min Tasi z Uniwersytetu Oksfordzkiego, który jest głównym autorem artykułu na temat pochodzenia dwutlenku siarki w atmosferze WASP-39b. Odkrycie to jest niezwykle ważne dla zrozumienia atmosfer egzoplanet. Informacje dostarczone przez Webba zostaną użyte do zbudowania fotochemicznych modeli komputerowych, które pozwolą nam wyjaśnić zjawiska zachodzące w atmosferze egoplanet. To z kolei zwiększy nasze możliwości poszukiwania życia na planetach pozasłonecznych. Planety są zmieniane i modelowane przez promieniowanie ich gwiazd macierzystych. Takie właśnie zmiany umożliwiły powstanie życia na Ziemi, wyjaśnia Batalha.
      WASP-39b znajduje się aż ośmiokrotnie bliżej swojej gwiazdy niż Merkury Słońca. To zaś okazja do zbadania wpływu gwiazd na egzoplanety i lepszego zrozumienia związków pomiędzy gwiazdą a planetą. Specjaliści będą mogli dzięki temu lepiej pojąć zróżnicowanie planet we wszechświecie.
      Poza dwutlenkiem siarki Webb wykrył też obecność sodu, potasu, pary wodnej, dwutlenku węgla oraz tlenku węgla. Nie zarejestrował natomiast oczywistych śladów obecności metanu i siarkowodoru. Jeśli gazy te są obecne w atmosferze, to jest ich niewiele.
      Astrofizyk Hannah Wakeford z University of Bristol w Wielkiej Brytanii, która specjalizuje się w badaniu atmosfer egzoplanet jest zachwycona danymi z Webba. Przewidywaliśmy, co może nam pokazać, ale to, co otrzymaliśmy, jest bardziej precyzyjne, zróżnicowane i piękne niż sądziliśmy, stwierdza.
      Teleskop dostarczył tak szczegółowych informacji, że specjaliści mogą też określać wzajemne stosunki pierwiastków, np. węgla do tlenu czy potasu do tlenu. Tego typu informacje pozwalają zrekonstruować sposób tworzenia się planety z dysku protoplanetarnego otaczającego jej gwiazdę macierzystą.
      Skład atmosfery WASP-39b wskazuje, że w procesie powstawania dochodziło do licznych zderzeń i połączeń z planetozymalami, czyli zalążkami planet. Obfitość siarki w stosunku do tlenu wskazuje prawdopodobnie, że doszło do znaczącej akrecji planetozymali. Dane pokazują też, że tlen występuje w znacznie większej obfitości niż węgiel, a to potencjalnie oznacza, że WASP-39b uformowała się z daleka od gwiazdy, mówi Kazumasa Ohno z UC Santa Cruz.
      Dzięki Webbowi będziemy mogli dokładnie przyjrzeć się atmosferom egzoplanet. To niezwykle ekscytujące, bo całkowicie zmieni naszą wiedzę. I to jedna z najlepszych stron bycia naukowcem, dodaje Laura Flagg z Cornell University.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA wyznaczyła datę kolejnej próby startu misji Artemis I. Będzie ona miała miejsce 14 listopada, a 69-minutowe okienko startowe otworzy się o godzinie 6:07 czasu polskiego. Dotychczas podjęto dwie próby startu, a po drugiej z nich nie było pewne, czy we wrześniu uda się przeprowadzić trzecią próbę. Mimo, że usterki, które uniemożliwiły obie próby, udało się usunąć, do Florydy zaczął zbliżać się huragan Ian, w związku z czym podjęto decyzję o przetransportowaniu rakiety do hangaru.
      Przeprowadzone po przejściu huraganu inspekcje i analizy wykazały, że przygotowanie rakiety i stanowiska startowego nie wymaga zbyt dużo pracy. Zdecydowano więc o podjęciu drobnych napraw w systemie ochrony termicznej, ponownym załadowaniu lub wymianie akumulatorów, przeprowadzeniu niewielkich zmian w systemie awaryjnego przerwania lotu. Rakieta wyjedzie z hangaru w kierunku stanowiska startowego 4 listopada.
      NASA zarezerwowała sobie dwa rezerwowe okna startowe, na 16 i 19 listopada. Wystrzelenie misji podczas którejś z trzech wymienionych dat – 14, 16 lub 19 listopada – będzie oznaczało, że misja Artemis I potrwa około 26 dni.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...