Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Pierwszy pełnokolorowy obraz z Teleskopu Webba. Zobaczyliśmy odległą przeszłość wszechświata

Recommended Posts

W Białym Domu właśnie odbyła się uroczystość, w czasie której zaprezentowano próbkę tego, czego możemy spodziewać się jutro. Joe Biden pokazał zdjęcie SMACS 0723, masywnej gromady galaktyk działającej jak kosmiczna soczewka.

Gromada galaktyk SMACS 0723 jest chętnie obserwowana przez Teleskop Hubble'a i inne teleskopy w poszukiwaniu obrazów z dalekiej przeszłości. Masywna grupa galaktyk, oddalona od nas o około 4,6 miliarda lat świetlnych, działa jak gigantyczny kosmiczny teleskop. Pole grawitacyjne galaktyk zagina i powiększa światło z obiektów znajdujących się poza nimi, działając jak soczewka. Mamy tutaj do czynienia ze zjawiskiem znanym jako soczewkowanie grawitacyjne. Dzięki SMACS 0723 możemy obserwować niezwykle odległe obiekty, które – gdyby nie soczewkowanie grawitacyjne – byłyby dla nas niewidoczne.

Jutro, 12 lipca, NASA – we współpracy z Europejską Agencją Kosmiczną (ESA) i CSA (Kanadyjską Agencją Kosmiczną) – pokaże kolejne pełnokolorowe obrazy oraz dane spektroskopowe zgromadzone przez Teleskop Kosmiczny Jamesa Webba.

Innymi obiektami, które wybrał międzynarodowy komitet, złożony z przedstawicieli NASA, ESA, CSA oraz Space Telescope Science Institute, a które zobaczymy jutro na pierwszych obrazach przekazanych przez Webba, będą:

 

Mgławica Carina, jedna z największych i najjaśniejszych mgławic. Znajduje się w odległości około 7600 lat świetlnych od Ziemi, w Gwiazdozbiorze Carina. W mgławicach rodzą się nowe gwiazdy, a Mgławica Carina jest domem licznych masywnych gwiazd, wielokrotnie większych od Słońca; planeta WASP-96 b to gazowy olbrzym oddalony o 1150 lat świetlnych od Ziemi. Okrąża swoją gwiazdę w 3,4 doby i ma masę o połowę mniejszą od masy Jowisza. Z planety otrzymamy obraz spektroskopowy; Mgławica Pierścień Południowy, zwana też Rozerwaną Ósemką, jest mgławicą planetarną, rozszerzającą się chmurą gazu, która otacza umierającą gwiazdę. Rozerwana Ósemka znajduje się w odległości około 2000 lat świetlnych od Ziemi i ma średnice niemal pół roku świetlnego; Kwintet Stephana, jest pierwszą kompaktową grupą galaktyk. Odkryty został w 1877 roku. Cztery z pięciu tworzących go galaktyk jest ze sobą powiązanych grawitacyjne. Kwintet Stephana znajduje się w odległości 290 milionów lat świetlnych od nas.
« powrót do artykułu

Share this post


Link to post
Share on other sites

Mgławica z eta Carinae jest jedna z najładniejszych na niebie. Czekam na wersje ultra-super-hi-res :lol: carina_5120x1440png_84_MB.png-

  • Like (+1) 2

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zbiory Narodowego Muzeum Morskiego (NMM) w Gdańsku wzbogaciły się o obraz Władysława Ślewińskiego zatytułowany „Morze”. Został on namalowany przed 1905 r. Widnieje na nim fragment skalistego wybrzeża Bretanii opływany przez fale. Dzieło kupiono za 480 tys. zł na aukcji domu aukcyjnego DESA Unicum „Sztuka Dawna. XIX wiek, Modernizm, Międzywojnie”. Tym samym jest to najdroższe dzieło malarskie nabyte przez nas od początku lat 90. XX w. - podkreśla dyrektor instytucji dr Robert Domżał.
      Dr Monika Jankiewicz-Brzostowska, kierowniczka Działu Sztuki Marynistycznej NMM, opowiada o barwach i kompozycji dzieła: zestawienie soczystej zieleni masywnych klifów, o mocno zaznaczonych konturach, z turkusem delikatnie rozmalowanych partii wody tworzy efekt kontrastu między ciężkimi zarysami lądu a lekkością oceanu. Horyzont usytuowany jest blisko górnej krawędzi płótna. Partia nieba nie odgrywa zatem odrębnej roli w kompozycji, ale całość tworzy wrażenie przenikania się powietrza i wody.
      Obraz znajduje się na wystawie stałej w Galerii Morskiej w Spichlerzach na Ołowiance. NMM podkreśla, że do jego zakupu doszło dzięki wsparciu Ministerstwa Kultury i Dziedzictwa Narodowego.
      NMM dysponuje bogatą kolekcją malarstwa marynistycznego. W zbiorach Muzeum znajdują się dzieła zarówno twórców polskich, jak i szkół obcych. Muzeum może poszczycić się pracami takich [polskich] twórców, jak Julian Fałat, Ferdynand Ruszczyc czy Jacek Malczewski, a z młodszego pokolenia - m.in. Wojciech Weiss, Mela Muter i Marian Mokwa. Tym bardziej znaczący był dotychczasowy brak w tej kolekcji obrazów Władysława Ślewińskiego, uznawanego za jednego z najwybitniejszych polskich marynistów - ujawniono w komunikacie prasowym.
      Dr Jankiewicz-Brzostowska zaznacza, że Ślewiński to bardzo malownicza postać. Urodził się w 1856 r. w rodzinie ziemiańskiej. Od [...] młodego wieku [był] przygotowywany do tego, że przejmie zarządzanie rodzinnym majątkiem. Rozpoczął nawet naukę w szkole rolniczej. [...] Niestety nic z tego nie wyszło. Próba zarządzania majątkiem, który został po zmarłej przy porodzie matce, skończyła się dramatycznie - koniecznością ucieczki [...] przed sekwestrem urzędu finansowego i wierzycielami. W ten oto sposób przyszły artysta znalazł się w Paryżu. Dopiero tam, w roku 1888, zainteresował się malarstwem. Od razu na początku spotkał Paula Gauguina. Zaprzyjaźnili się naprawdę blisko. [...] Wiele ich łączyło. Podobnie jak Gauguin, Ślewiński był samoukiem. [...] W zasadzie kształtował swoje malarstwo sam, właśnie pod wpływem Gauguina. Jankiewicz-Brzostowska dodaje, że Ślewiński wyjechał za Gauguinem do Bretanii. Przyłączył się do grupy w Pont-Aven. Tam powstawały jego słynne, do dziś podziwiane widoki Bretanii. W roku 1905 malarz wrócił na kilka lat do Polski: w latach 1905-10 przebywał w Krakowie, Poroninie i Warszawie (od 1908 do 1910 r. był prof. warszawskiej Szkoły Sztuk Pięknych). Później wrócił do Bretanii, gdzie mieszkał w „zameczku” w Doëlan. Zmarł 24 marca 1918 r. w Paryżu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.
      Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.
      Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.
      Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.
      Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
      Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.
      Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z University of Southampton donoszą o zaobserwowaniu najpotężniejszej znanej kosmicznej eksplozji. Jest ona 10-krotnie jaśniejsza niż jakakolwiek znana supernowa i 3-krotnie jaśniejsza niż najpotężniejsze rozerwanie gwiazdy przez siły pływowe czarnej dziury. Eksplozję AT2021lwx naukowcy obserwują od trzech lat. To bardzo długo, w porównaniu np. z supernowymi, które są widoczne przez kilka miesięcy. Do AT2021lwx doszło przed 8 miliardami lat, gdy wszechświat liczył sobie około 6 miliardów lat.
      Specjaliści sądzą, że to, co obserwują to proces niszczenia olbrzymiej chmury gazu – tysiące razy większej od Słońca – przez czarną dziurę. Części chmury wpadły do czarnej dziury, a powstałe w wyniku tego fale uderzeniowe przemiszczają się przez resztę chmury, która otoczyła czarną dziurę, tworząc kształt obwarzanka.
      AT2021lwx została wykryta w 2020 roku przez Zwicky Transient Facility i potwierdzona przez Asteroid Terrestrial-impact Last Alert System. Te instalacje przeglądają nocne niebo w poszukiwaniu obiektów gwałtownie zmieniających jasność. Takie zmiany mogą wskazywać na obecność supernowej czy przelatujące komety lub asteroidy. Jednak w momencie wykrycia skala eksplozji nie była znana. Pojawienie się na niebie jasnego obiektu zostało zauważone przez algorytm poszukujący supernowych. Jednak supernowe nigdy nie trwają tak długo.
      Naukowcy przeprowadzili więc szereg badań za pomocą różnych teleskopów. Przeanalizowali spektrum światła, zmierzyli linie absorpcji i emisji, co pozwoliło im na określenie odległości do obiektu. Gdy już znamy odległość i wiemy, jak jasny się nam obiekt wydaje, możemy obliczyć jasność obiektu u źródła. Gdy to zrobiliśmy, zdaliśmy sobie sprawę, że jest on ekstremalnie jasny, mówi profesor Sebastian Hönig.
      Jedynymi obiektami, które dorównują AT2021lwx jasnością są kwazary, supermasywne czarne dziury, do których ciągle wpada gaz pędzący z olbrzymią prędkością. W przypadku kwazarów dochodzi do zmian jasności. Raz są jaśniejsze, raz ciemniejsze. Przyjrzeliśmy się danym archiwalnym, z dekady sprzed odkrycia AT2021lwx. Niczego tam nie było i nagle pojawia się najjaśniejszy obiekt we wszechświecie, dodaje profesor Mark Sullivan.
      Zjawisko można interpretować na wiele różnych sposobów, jednak najbardziej prawdopodobnym wyjaśnieniem jest niszczenie przez czarną dziurę gigantycznej chmury gazu, głównie wodoru. Naukowcy mają nadzieję, że w najbliższych latach dzięki nowym urządzeniom, jak Vera Rubin Observatory, znajdą więcej obiektów podobnych do AT2021lwx i będą mogli lepiej je zbadać.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba prawdopodobnie znalazł galaktyki, których istnienie przeczy standardowemu modelowi kosmologicznemu. Wydaje się, że są one zbyt masywne jak na czas swoich narodzin.
      Astronomowie z The University of Texas at Austin informują na łamach Nature Astronomy, że sześć z najstarszych i najbardziej masywnych galaktyk zaobserwowanych przez JWST wydaje się przeczyć najbardziej rozpowszechnionym poglądom obowiązującym w kosmologii. Naukowcy szacują bowiem, że galaktyki te narodziły się w ciągu 500–700 milionów lat po Wielkim Wybuchu, a ich masa wynosi ponad 10 miliardów mas Słońca. Jedna z nich wydaje się nawet równie masywna co Droga Mleczna, a jest od niej o miliardy lat młodsza.
      Jeśli szacunki dotyczące masy są prawidłowe, to wkraczamy na nieznane terytorium. Wyjaśnienie tego zjawiska będzie wymagało dodania czegoś całkowicie nowego do teorii formowania się galaktyk lub modyfikacji poglądów kosmologicznych. Jednym z najbardziej niezwykłych wyjaśnień byłoby stwierdzenie, że wkrótce po Wielkim Wybuchu wszechświat rozszerzał się szybciej, niż sądzimy. To jednak mogłoby wymagać dodania nowych sił i cząstek, mówi profesor Mike Boylan-Kolchin, który kierował zespołem badawczym. Co więcej, by tak masywne galaktyki uformowały się tak szybko, w gwiazdy musiałoby zamienić się niemal 100% zawartego w nich gazu. Zwykle w gwiazdy zamienia się nie więcej niż 10% gazu galaktyki. I o ile konwersja 100% gazu w gwiazdy mieści się w teoretycznych przewidywaniach, to taki przypadek wymagałby zupełnie innych zjawisk, niż obserwujemy, dodaje uczony.
      Dane, jakich dostarczył JWST, mogą postawić astronomów przed poważnym problemem. Jeśli bowiem masy i wiek wspomnianych galaktyk zostaną potwierdzone, mogą być potrzebne fundamentalne zmiany w obowiązującym modelu kosmologicznym. Takie, które dotkną też ciemnej materii i ciemnej energii. Jeśli istnieją inne, szybsze sposoby formowania się galaktyk, albo też więcej materii było dostępnej we wczesnym wszechświecie, konieczna będzie radykalna zmiana poglądów.
      Oceny wieku i masy wspomnianych 6 galaktyk to wstępne szacunki. Następnym etapem prac powinno być przeprowadzenie badań spektroskopowych. W ich trakcie może się np. okazać, że czarne dziury w centrach galaktyk tak bardzo podgrzewają otaczający je gaz, że galaktyki są jaśniejsze, zatem wydają się bardziej masywne niż w rzeczywistości. Nie można też wykluczyć, że galaktyki tak naprawdę są młodsze, ale znajdujący się pomiędzy nami a nimi pył zmienia kolor docierającego z nich światła tak, iż jest ono bardziej przesunięte ku czerwieni, zatem wydaje się dochodzić z większej odległości, a zatem z młodszych galaktyk.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...