Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Dlaczego kobiety po menopauzie żyją tak długo?

Rekomendowane odpowiedzi

Długie życie kobiet po menopauzie to zagadka. Zgodnie z obowiązującym poglądem, selekcja naturalna promuje tych, którzy mogą się rozmnażać. Dlatego w pierwszych dekadach życia nasze organizmy lepiej radzą sobie z pojawiającymi się mutacjami. Jednak po okresie reprodukcyjnym, mechanizm ochronny zostaje wyłączony, po menopauzie komórki stają się bardziej podatne na mutacje. Dla większości zwierząt oznacza to szybką śmierć. Wyjątkiem są tu ludzie i niektóre walenie.

Z ewolucyjnego punktu widzenia długie życie po menopauzie to zagadka. Nie zyskujemy bowiem kilku lat. Mamy cały długi etap życia po przekroczeniu zdolności do reprodukcji, mówi profesor antropologii Michael Gurven z Uniwersytetu Kalifornijskiego w Santa Barbara. Naukowiec przywołuje tutaj przykład naszych bliskich krewnych, szympansów, u których dobrze widać związek pomiędzy płodnością a zdolnością do przeżycia, a długość życia tych zwierząt spada wraz ze spadkiem zdolności reprodukcyjnych.

Gurven we współpracy z ekologiem populacyjnym Razielem Davisonem opublikowali artykuł, w którym rzucają wyzwanie przekonaniu, że po okresie reprodukcyjnym ochronne mechanizmy doboru naturalnego u ludzi zostają wyłączone. Obaj uczeni stwierdzają, że długie życie po utracie zdolności do reprodukcji nie jest u ludzi tylko i wyłącznie zasługą postępów medycyny i opieki zdrowotnej.

Wyewoluowaliśmy możliwość długiego życia, stwierdza Gurven. A długie życie wynika z wartości, jakie niesie ze sobą obecność starszych dorosłych. Taki pomysł krążył wśród naukowców już od pewnego czasu. My go sformalizowaliśmy i zadaliśmy pytanie, jakie wartości – z ewolucyjnego punktu widzenia – wnoszą starsi dorośli.

Jeną z prób wyjaśnienia tego fenomenu jest hipoteza babki, mówiąca, że kobieta po menopauzie, pomagając swojej córce w wychowaniu dzieci, wpływa na polepszenie jej kondycji fizycznej, dzięki czemu córka może mieć więcej dzieci, co z kolei zwiększa szanse przetrwania genów matki. Zatem nie chodzi tutaj o reprodukcję, a rodzaj pośredniej reprodukcji. Możliwość wykorzystania całej puli zasobów, a nie tylko zasobów własnych, zupełnie zmienia reguły gry wśród zwierząt społecznych, wyjaśnia Davison.

Gurven i Davison przyjrzeli się elementowi, który jest motywem centralnym hipotezy babki, czyli transferom międzygeneracyjnym, a mówiąc prościej – dzieleniem się zasobami pomiędzy młodszym a starszym pokoleniem.

Najbardziej widocznym przejawem takiego dzielenia się zasobami jest podział pożywienia wśród społeczności nieuprzemysłowiony. Od chwili urodzin muszą minąć mniej więcej 2 dekady, by człowiek zaczął wytwarzać więcej pożywienia, niż sam konsumuje, mówi Gurven, który badał demografię i gospodarkę boliwijskiego ludu Tsimane i innych rdzennych mieszkańców Ameryki Południowej. Zanim dzieci dorosną, będą w stanie o siebie zadbać i stać się produktywnym członkiem społeczności, dorośli muszą włożyć dużo wysiłku w zdobycie i przygotowanie dla nich żywności. Jest to możliwe dlatego, że dorośli są w stanie wytworzyć więcej żywności niż tylko na własne potrzeby. Ta zdolność pojawiła się w naszej ewolucji już dawno i jest obecna też w wysoko rozwiniętych społeczeństwach przemysłowych.

W naszym modelu duże nadwyżki wytwarzane przez dorosłych pozwalają poprawić szanse na przeżycie i płodność krewniaków oraz innych członków grupy, którzy również dzielą się swoimi nadwyżkami. Patrząc tylko z punktu widzenia produkcji żywności widzimy, że najwyższą wartość mają tutaj ludzie w wieku rozrodczym. Gdy jednak wykorzystaliśmy dane demograficzny i gospodarcze z wielu różnych społeczności łowiecko-zbierackich i rolniczych okazało się, że nadwyżki dostarczane przez starszych dorosłych, również mają pozytywny wpływ na grupę. Obliczyliśmy, że dłuższe życie starszych osób ma wartość kilku dodatkowych dzieci, mówi Davison.

Okazuje się jednak, że osoby starsze mają swoją wartość, ale tylko do pewnego wieku. Nie wszystkie babki są cenne. Mniej więcej w połowie 7. dekady życia w społecznościach łowiecko-zbierackich i rolniczych starsze osoby zaczynają zużywać więcej zasobów, niż dostarczają. Ponadto w tym czasie większość ich wnuków już ich nie potrzebuje, więc grupa krewnych, która korzysta z ich pomocy jest mała.

Żywność to jednak nie wszystko. Starsze osoby uczą i socjalizują dzieci. To właśnie na tym polega ich największa wartość. Nie dostarczają już tak dużych nadwyżek żywności, jak kiedyś, ale dzielą się z wnukami swoimi umiejętnościami i doświadczeniem oraz odciążają rodziców od opieki nad dziećmi. Gdy zdasz sobie sprawę z tego, że starsi pomagają młodszemu pokoleniu w utrzymaniu kondycji pozwalającej mu na wytwarzanie dużych nadwyżek, łatwo zauważysz, że to spora korzyść z obecności starszych aktywnych osób. Starsi nie tylko dają coś grupie, ale ich użyteczność dla grupy powoduje, że i oni coś od niej otrzymują. Czy to nadwyżki żywności, czy to ochronę i opiekę. Innymi słowy, współzależności występują w obie strony, od starszych do młodszych i od młodszych do starszych, wyjaśnia Gurven.

Zdaniem obu badaczy, w toku ludzkiej ewolucji stosowane przez naszych przodków strategie i długoterminowe inwestycje w kondycję grupy skutkowały zarówno wydłużonym dzieciństwem jak i niezwykle długim życiem po okresie rozrodczym. Dla kontrastu możemy się tutaj przyjrzeć szympansom, które są w stanie zadbać o siebie już przed osiągnięciem 5. roku życia.

Jednak zdobywanie przez nie pokarmu wymaga mniejszych umiejętności i wytwarzają one niewielkie nadwyżki. Mimo to, jak sugerują Gurven i Davison, gdyby przodek szympansa szerzej dzielił się żywnością z grupą, także i u nich pojawiłyby się mechanizmy preferujące długowieczność. To pokazuje, że naszą długowieczność zawdzięczamy współpracy. Szympansie babki rzadko robią coś dla swoich wnucząt, dodaje Gurven.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Wyjątkowa baza 2400 stanowisk archeologicznych obejmujących dzieje człowieka od 3 milionów lat temu do 20 000 lat temu obejmuje ponad 100 starych kultur i opisuje wyniki 150 lat prac archeologicznych. Jest ona dziełem naukowców z centrum badawczego ROCEEH (The Role of Culture in Early Expansions of Humans), którzy skompilowali olbrzymią liczbę informacji i umieścili je w jednej ogólnodostępnej bazie danych.
      ROAD (ROCEEH Out of Africa Database) to jeden z największych zbiorów danych dotyczących archeologii, antropologii, paleontologii i botaniki, wyjaśnia doktor Andrew Kandel z Uniwersytetu w Tybindze. W sposób jednorodny pod względem geograficznym i chronologicznym połączono informacje o zabytkach kultury, szczątkach człowieka i jego przodkach, pozostałościach zwierząt i roślin. W ten sposób powstało narzędzie, które pomaga w analizie wielu różnych aspektów ewolucji człowieka.
      Baza ROAD to wynik 15 lat pracy naukowców, którzy przeanalizowali ponad 5000 publikacji w wielu językach, w tym w angielskim, chińskim, francuskim, włoskim czy portugalskim. Powstała w ten sposób łatwa w użyciu interaktywna mapa stanowisk archeologicznych. Użytkownik może na jej podstawie tworzyć też własne mapy obejmujące konkretne kultury, obszary geograficzne czy okresy historyczne.
      Naukowcy mogą zadawać ROAD zaawansowane zapytania, dzięki którym sprawdzą na przykład, obecność konkretnej kategorii kamiennych narzędzi w Afryce czy dystrybucję konkretnych gatunków zwierząt w interesujących ich okresach, jak chociażby podczas wycofywania się lądolodu. Takie zapytania dostarczą naukowcom olbrzymiej ilości danych, które później mogą wykorzystać do dalszej pracy za pomocą zaawansowanych metod wizualizacji czy analizy, mówi Kandel.
      Baza pokazuje tez, że znaczna część naszej wiedzy pochodzi z bardzo niewielu dobrze przebadanych regionów, jak Afryka Południowa i Wschodnia, Europa czy Azja Centralna i Wschodnia. Większa część obszarów planety to archeologiczna biała plama. Badanie tych obszarów może przynieść w przyszłości niezwykle ekscytujące odkrycia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Motyle – zarówno te dzienne jaki i nocne, czyli ćmy – to jeden z najbardziej rozpowszechnionych rzędów owadów. Ćmy pojawiły się około 300 milionów lat temu. W 2019 roku dowiedzieliśmy się, że przed około 100 milionami lat grupa nocnych motyli zaczęła latać za dnia, by korzystać z bogatych w nektar kwiatów. Tym samym udowodniono, że nieprawdziwa jest hipoteza, jakoby motyle dzienne pojawiły się już po zagładzie dinozaurów, by uniknąć polujący na ćmy nietoperzy. Dotychczas jednak sądzono, że motyle dzienne po raz pierwszy wyewoluowały w Azji. Teraz okazuje się, że to nieprawda.
      Akito Kawahara, kurator zbiorów motyli we Florida Museum of Natural History, i jego zespół przeprowadzili analizy genetyczne niemal 2300 gatunków motyli reprezentujących wszystkie rodziny i 92% rodzajów z rzędu Lepidoptera. Stworzyli największe na świecie drzewo genealogiczne motyli i dowiedli, że motyle dzienne po raz pierwszy wzbiły się do lotu w Ameryce Północnej i Środkowej. Żywiły się wówczas roślinami z rodziny bobowatych.
      To było moje marzenie z dzieciństwa. To coś, co chciałem zrobić od czasu pierwszej wizyty w Amerykańskim Muzeum Historii Naturalnej gdy byłem dzieckiem i gdy na drzwiach biura kuratora zobaczyłem drzewo genealogiczne motyli. To jednocześnie najtrudniejsze badania naukowe, w jakich brałem udział. Wymagały one wielkiego wysiłku ze strony ludzi na całym świecie, cieszy się Kawahara.
      Obecnie istnieje około 19 000 gatunków motyli dziennych. Zrekonstruowanie ich historii na przestrzeni 100 milionów lat było trudnym zadaniem. Wymagało zebrania danych o miejscach występowania poszczególnych gatunków motyli oraz roślin, z których korzystają. Dane takie nie były jednak przechowywane w jednym miejscu, znaczna ich część nie była zdigitalizowana, konieczne było przeszukiwanie publicznie dostępnych baz danych, poszukiwanie książek oraz artykułów naukowych, tłumaczenie ich z różnych języków, przeglądanie zbiorów muzealnych i innych miejsc, w których znajdowały się użyteczne informacje o motylach.
      Naukowcy przeanalizowali też 11 niezwykle rzadkich skamieniałości motyli, które wykorzystali do kalibracji swojego drzewa genetycznego. Dzięki temu dowiedzieli się np. że motyle dzienne bardzo szybko się różnicowały, jedne grupy pokonywały w toku ewolucji olbrzymie odległości, inne zaś pozostawały w miejscu, mimo, że wokół nich swój bieg zmieniały rzeki, pojawiały się i znikały pasma górskie, przemieszczały się kontynenty.
      Dzięki olbrzymiej pracy naukowców wiemy, że motyle dzienne pojawiły się po raz pierwszy gdzieś w Ameryce Środkowej i zachodnich częściach Ameryki Północnej. W tym czasie Ameryka Północna była przedzielona szerokim morzem, a Ameryka Północna i Południowa nie były jeszcze połączone. Mimo to motyle były w stanie pokonywać wielkie przestrzenie nad wodami i podbijały świat. Nie zawsze leciały najkrótszą drogą. Mimo że wówczas Ameryka Południowa i Afryka znajdowały się dość blisko siebie, motyle najpierw przeleciały do Azji, na Bliski Wschód i do Afryki Wschodniej. Dotarły nawet do Indii, które wówczas były wyspą. Największym ich wyczynem było zaś dotarcie do Australii, połączonej wówczas z Antarktyką. Oba kontynenty były ostatnią pozostałością Pangei. Nie można wykluczyć, że motyle żyły przez pewien czas w Antarktyce.
      A przed około 45 milionami lat zjawiły się w Europie. Nie wiadomo, dlaczego zajęło im to tak dużo czasu, ale skutki tej późnej migracji widać do dzisiaj. W Europie, w porównaniu z innymi kontynentami, nie ma zbyt wielu gatunków motyli. A te które są, często występują w innych częściach świata, na przykład na Syberii i w Azji, mówi Kawhara.
      Gdy już motyle zasiedlały jakiś obszar, szybko się różnicowały w zależności od występujących na nim roślin. Gdy z Ziemi zniknęły dinozaury, istniały już niemal wszystkie współczesne rodziny motyli, a każda z nich była w sposób szczególny powiązana z konkretnymi roślinami.
      Gdy naukowcy porównali historię ewolucyjną motyli oraz roślin, na których żerują, stwierdzili, że dochodziło tutaj do wspólnej ewolucji. Naukowcy zauważyli, że obecnie 67,7% gatunków motyli to gatunki, które korzystają z jednej rodziny roślin, a 32,3% gatunków korzysta z dwóch lub więcej rodzin. Motyle żywiące się na bobowatych i wiechlinowatych często korzystają tylko z nich. Większość gatunków nie korzysta z roślin z innych rodzin. Bobowate i wiechlinowate są szeroko rozpowszechnione i występują niemal we wszystkich ekosystemach. Wiekszość z nich posiada też potężne chemiczne środki obronne odstraszające owady. Jednak od milionów lat rośliny te pozwalają, by motyle z nich korzystały.
      Grupa Kawahary zauważyła też, że aż 94,2% gatunków motyli pożywiających się na więcej niż jednej rodzinie roślin, wybiera rośliny blisko spokrewnione. To zaś potwierdza wcześniejsze badania, z których wynikało, że spokrewnione ze sobą motyle żywią się na spokrewnionych ze sobą roślinach.
      Ewolucja motyli i roślin okrytonasiennych jest ze sobą nierozerwalnie związana od samych początków istnienia tych roślin, a bliskie związki pomiędzy tymi organizmami doprowadziły do pojawienia się wspaniałej różnorodności i roślin, i zwierząt, dodaje profesor Pamela Soltiz z Florida Museum.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
      O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
      Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
      Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
      Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
      Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
      Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wspaniały galeon Vasa, wybudowany na polecenie Gustawa Adolfa na wojnę z I Rzeczpospolitą, zatonął w 1628 roku podczas dziewiczego rejsu po przepłynięciu zaledwie 1300 metrów. Wrak odnaleziono ponad 300 lat później, wydobyto, a okręt zrekonstruowano. Można go podziwiać w specjalnie zbudowanym muzeum. Jednak prace badawcze nad okrętem i tym, co wraz z nim znaleziono, wciąż trwają i wciąż przynoszą niespodzianki. Właśnie okazało się, że na pokładzie w chwili zatonięcia jednostki znajdowała się kobieta.
      Wraz z Vasą zginęło około 30 osób. Ze źródeł historycznych znamy tylko nazwisko jednej z nich. Archeolodzy wydobyli liczne szkielety, które również są przedmiotem badań. Analiza osteologiczna wiele zdradza na temat tych ludzi, ich wieku, wzrostu czy historii chorób. Specjaliści, na podstawie budowy miednicy, od niedawna podejrzewali, że szkielet G należał do kobiety. Analizy DNA ujawniły nam jeszcze więcej informacji, mówi doktor Fred Hocker, dyrektor ds. badawczych w Vasamuseet.
      Muzeum on niemal 20 lat współpracuje z Wydziałem Immunologii, Genetyki i Patologii na Uniwersytecie w Uppsali. Akademicy prowadzą badania wszystkich ludzkich szczątków znalezionych wraz z Vasą, by jak najwięcej dowiedzieć się o każdym zmarłym. Badanie szkieletów z Vasy to dla nas to i interesujące, i wymagające wyzwanie. Bardzo trudno jest uzyskać DNA z kości, które przez 333 lata leżały na dnie morskim. Ale nie jest to niemożliwe, mówi profesor genetyki sądowej Marie Allen. Już kilka lat temu podejrzewaliśmy, że szkielet G należał do kobiety. W materiale genetycznym nie znaleźliśmy chromosomu Y. Ale nie mogliśmy być do końca pewni i chcieliśmy potwierdzić wyniki naszych badań, dodaje.
      Szwedzi nawiązali więc współpracę z doktor Kimberly Andreaggi z należącego do Pentagonu laboratorium AFMES-AFDIL (Armed Forces Medical Examiner System’sArmed Forces DNA Identification Laboratory), które specjalizuje się w testowaniu DNA szczątków, o których przypuszcza się, że należą do zaginionych amerykańskich żołnierzy.
      Pobraliśmy nowe próbki z kości, co do których chcieliśmy poznać odpowiedzi na dodatkowe pytania. AFMES-AFDIL przeanalizowało próbki i dzięki swoim metodom mogło potwierdzić, że G to kobieta, cieszy się Marie Allen.
      Wyniki badań bardzo ucieszyły doktor Annę Marię Forssenberg. Jest ona historykiem w Vasamuseet i od pewnego czasu zajmuje się badaniami nad żonami marynarzy. To odkrycie jest dla mnie szczególnie ekscytujące, gdyż zony marynarzy są często zapomniane przez historię, a odegrały ważną rolę w historii marynarki wojennej.
      To jednak nie koniec badań. Wkrótce powinniśmy dowiedzieć się jeszcze więcej. Allen i Adreaggi uważają, że będą mogły określić przybliżony wygląd poszczególnych osób, kolor ich oczu i włosów, być może nawet DNA zdradzi, skąd pochodziły rodziny zmarłych. Obecnie jesteśmy w stanie wydobyć z historycznego DNA więcej informacji niż wcześniej, a metody badawcze ciągle są udoskonalane. Możemy na przykład stwierdzić, czy dana osoba miała predyspozycje do jakichś chorób, a nawet określić takie szczegóły jak posiadanie piegów oraz czy woskowina w ich uszach była sucha czy wilgotna.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
      Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
      Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
      Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
      Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...