Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Za niezwykłą inteligencję ośmiornic mogą odpowiadać te same „skaczące geny”, co w ludzkim mózgu

Recommended Posts

Ośmiornice to wyjątkowe stworzenia w świecie bezkręgowców. Wyróżniają się niezwykłą inteligencją i zdolnościami poznawczymi. Pod wieloma względami mają więcej wspólnego z kręgowcami niż bezkręgowcami. Zdolności ośmiornic od dawna fascynują naukowców. Teraz uczeni donoszą, że – być może – za część inteligencji tych zwierząt odpowiada pewne molekularne podobieństwo ich mózgów, do mózgów ludzi. Odkryli bowiem, że w mózgach dwóch gatunków ośmiornic aktywne są te same „skaczące geny” co w ludzkim mózgu.

„Skaczące geny”, czyli transpozony, to sekwencje DNA, które mogą przemieszczać się na inne pozycje w genomie.
W 2001 roku odkryto, że ponad 45% ludzkiego genomu składa się z transpozonów, „skaczących genów”, które mogą zmieniać miejsce w genomie. W większości przypadków te mobilne elementy nie są aktywne i utraciły zdolność do przemieszczania się.

Jednym z najbardziej interesujących naukowców mobilnych transpozonów są te, które należą do rodziny LINE (Long Interspersed Nuclear Elements). Są one potencjalnie aktywne, a w naszym genomie występują setki ich kopii. Początkowo sądzono, że aktywność transpozonów rodziny LINE to kwestia przeszłości, pozostałość po czasach, gdy zachodziły procesy ewolucyjne, w których brały one udział. Jednak w ostatnich latach okazało się, że w mózgu aktywność LINE jest bardzo precyzyjnie regulowana. Obecnie wielu specjalistów sądzi, że transpozony LINE są powiązane ze zdolnością uczenia się  zapamiętywania. Są bowiem szczególnie aktywne w hipokampie, najważniejszej strukturze mózgu odpowiedzialnej za proces uczenia się.
Genom ośmiornicy również jest pełen transpozonów, z których większość jest nieaktywna. Remo Sanges z SISSA w Trieście i Graziano Fiorito ze Stazione Zoologica Dohrn w Neapolu skupili się na poszukiwaniu aktywnych transpozonów w mózgach ośmiornic. Zidentyfikowali element rodziny LINE, który jest kluczowy dla zdolności poznawczych tych zwierząt.

Odkrycie elementu z rodziny LINE, aktywnego w mózgach dwóch gatunków ośmiornic [Octopus vulgaris i Octopus bimaculoides – red.] to bardzo ważne wydarzenie, gdyż wspiera hipotezę, że fragmenty te odgrywają jeszcze jakąś rolę poza kopiowaniem się, mówi Sanges. A Giovanna Ponte, dyrektor Wydziału Biologii i Ewolucji Organizmów Morskich w Stazione Zoologica Anton Dohrn dodaje: dosłownie podskoczyłam na krześle, gdy pod mikroskopem zauważyłam bardzo silny sygnał aktywności tego elementu w płacie pionowym, części mózgu, która u ośmiornicy spełnia tę samą rolę co hipokamp u człowieka.

Jako że mózg ośmiornicy w wielu aspektach funkcjonalnych przypomina mózgi ssaków, nowo odkryty element LINE może zawierać tajemnice dotyczące ewolucji inteligencji.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Rozczula mnie to doszukiwanie się magicznych rozwiązań trudnych problemów. I jeśli już, to odwrotnie - za inteligencję ludzi odpowiada podobieństwo do ośmiornic.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      U osób w wieku ponad 80 lat, które zachowały świetną pamięć, neurony w korze śródwęchowej – odpowiedzialnej za procesy związane z pamięcią – są znacząco większe niż u ich rówieśników, osób na wczesnych etapach choroby Alzheimera, a nawet niż u osób o 20–30 lat młodszych. Takie wnioski płynął z przeprowadzonych po śmierci badań mózgów tzw. superstaruszków.
      Zaobserwowanie, że u superstaruszków występują większe neurony niż u znacznie młodszych ludzi, wskazuje, iż były one już obecne w momencie narodzin i zachowały swoją strukturę przez całe życie. Sądzimy, że posiadanie większych neuronów to sygnał, że człowiek będzie superstaruszkiem, mówi główna autorka badań, profesor psychiatrii Tamar Gefen z Northwestern University.
      Gefen i jej zespół od lat prowadzą badania nad tzw. superstaruszkami, osobami w wieku powyżej 80. roku życia, których pamięć pracuje równie sprawnie jak osób młodszych o co najmniej 30 lat. Część z badanych zgodziła się oddać po śmierci swoje mózgi do szczegółowej analizy. Aby zrozumieć jak i dlaczego ludzie mogą być odporni na chorobę Alzheimera, musimy przeprowadzić sekcje mózgów superstaruszków. Chcemy dowiedzieć się, co czyni ich mózgi wyjątkowymi oraz jak możemy wykorzystać ich cechy, bo pomóc starszym osobom bronić się przed chorobą Alzheimera, mówi Gefen. Naukowcy skupili się na korze węchowej, gdyż jest ona powiązana z funkcjami pamięci i jest to jedno z pierwszych miejsc w mózgu, w których rozwija się alzheimer.
      Kora węchowa składa się z sześciu warstw neuronów ułożonych jedna na drugiej. Szczególnie interesująca jest Warstwa II, która odbiera informacji z innych centrów pamięci i jest kluczowym elementem całego układu pamięci.
      Naukowcy mieli do dyspozycji sześć mózgów superstaruszków, których średni wiek wynosił 91 lat, mózgi siedmiu przeciętnych starszych osób, sześciu młodych osób oraz pięciu osób z wczesnym etapem alzheimera. Skupili się na pomiarach rozmiarów neuronów w Warstwie II kory węchowej oraz poszukiwali w nich splątków białek tau, które są charakterystyczne dla alzheimera.
      Z nieznanych dotychczas powodów kora węchowa jest szczególnie podatna na formowanie się splątków tau zarówno podczas normalnego procesu starzenia się, jak i w czasie rozwoju choroby Alzheimera. Wykazaliśmy, że kurczenie się neuronów w korze węchowej osób cierpiących na alzheimera to prawdopodobnie cecha charakterystyczna choroby. Podejrzewamy, że proces ten ma coś wspólnego z tworzeniem się splątków białek tau i prowadzi do pogorszenia pamięci u osób starszych, mówi Gefen. Uczona dodaje, że konieczne są dalsze badania nad mechanizmami, które pozwalają superstaruszkom zachować neurony w dobrym zdrowiu. Które z czynników – chemiczne, metaboliczne czy genetyczne – powodują, że ich komórki nerwowe są tak odporne?, pyta.
      Pytania takie są jak najbardziej zasadne. Z badań, opublikowanych na łamach Journal of Neuroscience, wynika bowiem, że neurony kory węchowej superstaruszków są o 10% większe niż neurony ich rówieśników i o 5% większe niż neurony osób o 40 lat młodszych. Ponadto w neuronach superstaruszków znaleziono znacznie mniej splątków tau niż w neuronach rówieśników.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy zbliża się zima, krety stają przed poważnym wyzwaniem. Muszą przetrwać najmroźniejsze miesiące, tymczasem pożywienia będzie zbyt mało, by podtrzymać ich wymagający metabolizm. Zwierzęta znalazły jednak niezwykły sposób na przeżycie. Zamiast migrować lub hibernować, krety... obkurczają swój mózg. Dina Dechmann i jej zespół z Instytutu Behawiorystyki im. Maxa Plancka donoszą, że w zimie krety zmniejszają objętość mózgu o 11%, a do lata zwiększa się on o 4%.
      Kret europejski jest zatem kolejnym gatunkiem ssaka, u którego występuje fenomen znany jako zjawisko Dehnela. Jednak niemieccy naukowcy zrobili coś więcej, niż tylko powiększenie katalogu takich zwierząt. Przyjrzeli się też mechanizmom ewolucyjnym, w ramach których wytworzył się ten niezwykły mechanizm oszczędzania energii.
      Uczeni porównali krety żyjące w różnych warunkach klimatycznych i stwierdzili, że mechanizm kurczenia mózgu jest napędzany raczej przez niskie temperatury, niż przez same niedobory pożywienia. Zmniejszenie tkanki mózgowej pozwala na zmniejszenie poboru energii i przetrwanie chłodów.
      Zjawisko Dehnela zostało opisane w latach 50., kiedy zauważono, że czaszki ryjówek są mniejsze zimą, a większe latem. W 2018 Dechmann wraz z kolegami udowodniła, że takie zmiany zachodzą przez całe życie zwierzęcia i wykazała, iż mają one miejsce też u gronostajów i łasic. Wszystkie wymienione gatunki łączy bardzo wymagając metabolizm.
      Ich metabolizm działa na najwyższych obrotach i są aktywne przez cały rok w chłodnym klimacie. Ich organizmy są jak silniki Porscha z turbodoładowaniem. Spalają zapasy energii w ciągu godzin, wyjaśnia Dechmann.
      Obkurczenie wymagających energetycznie narządów, takich jak mózg, pozwala zwierzętom zmniejszyć zapotrzebowanie na energię. Rozumieliśmy, że zjawisko Dehnela pozwala zwierzętom przetrwać trudne czasy. Nie rozumieliśmy jednak, co było prawdziwym wyzwalaczem środowiskowym, napędzającym ten proces, wyjaśniają uczeni.
      Uczeni zmierzyli przechowywane w muzeach czaszki kretów europejskich oraz kretów iberyjskich i na tej podstawie zbadali, jak zmieniają się one wraz z porami roku. Odkryli, że w listopadzie czaszka kreta europejskiego kurczy się o 11%, a wiosną zwiększa się o 4%. U kreta iberyjskiego jej rozmiar się nie zmieniał.
      Na tej podstawie stwierdzili, że czynnikiem wyzwalającym proces zmniejszania i powiększania czaszki jest temperatura, a nie dostępność pożywienia. Gdyby to była kwestia tylko pożywienia, to czaszki kretów europejskich powinny zmniejszać się zimą, a kretów iberyjskich latem, gdy z powodu upałów zmniejsza się dostęp do pożywienia, mówi Dechmann.
      Naukowcy mają nadzieję, że poznanie mechanizmu zmian wielkości tkanki mózgowej i tkanki kostnej ułatwi nam badania nad chorobą Alzheimera czy osteoporozą.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Unikatowa metoda stymulacji mózgu naśladująca sposób, w jaki tworzymy wspomnienia, wydaje się poprawiać zdolność ludzi do zapamiętywania nowych informacji. Pierwsze eksperymenty sugerują, że ta prototypowa „proteza pamięci” nie tylko pomaga ludziom cierpiącym na zaburzenia negatywnie wpływające na zdolność do zapamiętywania, ale działa u nich bardziej efektywnie, niż u zdrowych. Być może w przyszłości bardziej zaawansowana wersja takiej protezy będzie pomagała osobom, które utraciły pamięć w wyniku urazu czy chorób neurodegeneracyjnych.
      Profesor Sam Deadwyler z Wake Forest Baptist wraz z zespołem od ponad 20 lat pracuje nad technologią naśladowania procesów zachodzących w hipokampie, kluczowej strukturze mózgu, która bierze udział w tworzeniu pamięci krótkotrwałej i przenoszeniu informacji z pamięci krótkotrwałej do długotrwałej. Naukowcy postanowili wykorzystać elektrody wszczepiane do mózgu, by zrozumieć wzorce aktywności elektrycznej pojawiające się podczas zapamiętywania, a następnie wykorzystać te same elektrody do sztucznego stworzenia takich wzorców. Badania prowadzono na zwierzętach oraz na ochotnikach, którzy mieli wszczepione elektrody w ramach leczenia epilepsji.
      Bliski współpracownik profesora Deadwylera, doktor Rob Hampson wraz z kolegami z Wake Forest University School of Medicine przeprowadzili eksperymenty nad praktycznym wykorzystaniem wspomnianych badań. Znaleźli 24 ochotników z elektrodami wszczepionymi z powodu epilepsji. Część z tych osób miała też uszkodzenia mózgu.
      Wolontariusze brali udział w testach pamięci. Każdemu z nich na ekranie komputera pokazano obrazek. Po pewnym czasie widzieli ten sam obrazek, ale w towarzystwie innych. Ich zadaniem było wskazanie, który z obrazków widzieli już wcześniej. Ten test pamięci krótkoterminowej powtórzono 100-150 razy.
      Kolejny test, tym razem pamięci długoterminowej, rozpoczęto 15–90 minut po zakończeniu pierwszego. Tym razem badani widzieli na ekranie 3 obrazki i proszono ich, by wskazali ten, który wydaje im się znajomy.
      Oba testy powtórzono dwukrotnie. Za pierwszym razem, by zarejestrować aktywność elektryczną w hipokampie. Za drugim razem podczas testu elektrody stymulowały mózgi badanych, korzystając z wcześniej zarejestrowanego wzorca. Wzorzec ten był inny w przypadku każdej z osób.
      Naukowcy zauważyli, że proteza pamięci pozwalała na uzyskanie lepszych wyników w teście pamięci. Badani znacznie lepiej zapamiętywali, gdy w czasie testu ich mózgi były stymulowane przez elektrody według wzorca zarejestrowanego w czasie pierwszego testu. Badani uzyskiwali od 11 do 54 procent lepsze wyniki. Największa poprawa zaszła u tych osób, które na początku eksperymentów miały najpoważniejsze problemy z pamięcią.
      Wszystkim uczestnikom eksperymentu elektrody usunięto po tym, jak ich lekarze zakończyli badania związane z dręczącą ich epilepsją. Jednak autorzy protezy pamięci mają nadzieję, że mimo to pacjenci będą odczuwali pozytywne skutki eksperymentu. Teoretycznie bowiem stymulacja elektryczna, jaką otrzymali, może wzmocnić połączenia pomiędzy neuronami w ich hipokampach.
      Być może w przyszłości udoskonalona proteza pamięci będzie szeroko używana, by pomóc ludziom z różnymi zaburzeniami. Pierwszymi kandydatami do tego typu leczenia będą zapewne osoby z urazami mózgu. Pomoc osobom z urazami hipokampu powinna być łatwiejsza niż osobom z chorobami neurodegeneracyjnymi, gdyż te ostatnie zwykle uszkadzają wiele regionów mózgu. Zanim jednak takie urządzenia powstaną, musimy znacznie więcej dowiedzieć się o badaniu mózgu i rozwiązać wiele problemów technicznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięcioł uderzający dziobem o drzewo z wielką siłą, prędkością i częstotliwością w jakiś sposób nie odczuwa negatywnych skutków swoich działań. Specjaliści, zastanawiający się, w jaki sposób mózg ptaka znosi te uderzenia, mówią o specjalnej konstrukcji czaszki lub o długim owiniętym wokół czaszki języku, co ma łagodzić wstrząsy. Autorzy najnowszej analizy twierdzą jednak, że nic takiego nie ma miejsca.
      Wielu badaczy zakłada, że musi istnieć jakiś mechanizm absorpcji siły uderzenia, gdyż jeśli my byśmy zrobili coś takiego, to byłby on nam potrzebny, mówi Thomas Roberts, biomechanik z Brown University, który nie był zaangażowany w najnowsze badania.
      Gdy nisko pochylony zawodnik futbolu amerykańskiego wpada na przeciwnika, jego głowa się zatrzymuje, ale mózg porusza się nadal, dochodzi do jego kompresji. Czasem może dojść w ten sposób do uszkodzenia. Tymczasem dzięcioł może tysiące razy dziennie uderzać dziobem w drzewo z przyspieszeniem trzykrotnie większym niż to, które pozbawiłoby człowieka przytomności i nie odnosi przy tym obrażeń.
      Pomimo braku dowodów biologicznych na znaczącą absorpcję siły uderzenia, inżynierowie wykorzystują morfologię czaszki dzięciołów jako wzór do budowy hełmów. Tymczasem hipoteza o absorbowaniu uderzenia przez czaszkę nie tylko nie została zbadana w naturze, ale jest też kontrowersyjna. Mielibyśmy tutaj bowiem do czynienia z paradoksem, polegającym na tym, że dzięciołowi zależy, by przykładać dużą siłę do drzewa. Gdyby siła uderzeń była absorbowana, dzięcioł musiałby uderzać jeszcze mocniej, by osiągnąć pożądane efekty. Jako że możemy przypuszczać, iż silne wybiórcze oddziaływanie na drzewo prawdopodobnie usprawniało działania dzięcioła w toku ewolucji, jak jednocześnie miałaby wyewoluować cecha ograniczająca to oddziaływanie, czytamy w artykule pod wiele mówiącym tytułem Woodpeckers minimize cranial absorption of shocks [PDF] opublikowanym na łamach Cell. Current Biology.
      Autorzy nowej analizy, w tym Sam Van Wassenbergh z Uniwersytetu w Antwerpii, postanowili przede wszystkim sprawdzić hipotezę jakoby pomiędzy dziobem dzięcioła a jego mózgiem istniał mechanizm absorpcji siły wstrząsu, który powodowałby, że wytracanie prędkości przez mózg jest znacznie łagodniejsze niż wytracanie prędkości przez dziób uderzający w drzewo. Za pomocą szybkiej kamery nagrali sześć żyjących w ptaszarniach dzięciołów należących do trzech gatunków (2 dzięcioły czarne, 2 dzięcioły długoszyje oraz 2 dzięcioły duże). Następnie wykorzystali analizę poklatkową do śledzenia pozycji dwóch znaczników umieszczonych na dziobie każdego zwierzęcia, jednego na oku oraz, w przypadku dzięcioła długoszyjego, kropki narysowanej tuż za okiem. Jako, że oczy są ciasno umieszczone w oczodołach, które znajdują się pomiędzy gąbczastym fragmentem czaszki z przodu, a tylną częścią czaszki, wytracanie prędkości przez oko jest dobrym przybliżeniem wytracania prędkości przez tylną część mózgu, stwierdzili autorzy badań.
      Analizy wykazały, że podczas uderzania obszar łączący dziób z okiem jest sztywny. Co więcej, u dzięciołów czarnych i jednego dzięcioła dużego mediana wytracania prędkości przez oko nie różniła się znacząco od mediany wytracania prędkości przez dziób, a u dzięciołów długoszyich i jednego dzięcioła dużego oko znacznie bardziej gwałtownie wytracało prędkość niż dziób. Analiza obu znaczników na dziobie pokazała zaś, że absorpcja siły uderzenia jest w nim albo pomijalnie mała (zjawisko takie zanotowano u jednego dzięcioła czarnego), albo też nie zachodzi.
      Badania wskazują zatem, że w czasie kucia głowa dzięciola działa jak sztywny młot. Ich autorzy uważają, że gąbczaste fragmenty czaszki dzięciołów nie służą do absorbowania siły uderzenia i ochrony mózgu poprzez elastyczne deformowania się, a ich budowa ma służyć ochronie samej czaszki przed rozpadnięciem się od uderzeń.
      Van Wassengergh i jego koledzy piszą, że przeprowadzone symulacje ciśnień wewnątrzczaszkowych potwierdzają teorię Gibsona mówiącą, że taki system może działać bez specjalnych mechanizmów ochrony przed uszkodzeniami mózgu. Sądzą, że w toku ewolucji u dzięciołów pojawiły się odpowiednie rozmiary głowy, ograniczenie maksymalnej prędkości uderzenia oraz umiejętność wyboru drzew o odpowiedniej twardości. Nie wykluczają też istnienia dodatkowych środków ochronnych jak mechanizmy naprawy uszkodzeń mózgu, odpowiednia kompresja żył w szyi celem zwiększenia ciśnienia krwi w mózgu czy manipulowanie przepływem płynu mózgowo-rdzeniowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Kolonii zaproponowali nowatorskie podejście do leczenia zaburzeń jedzenia. Wykazali, że neurony AgRP (agouti-related peptide neurons) kontrolują uwalnianie endogennych lizofosfolipidów. Te z kolei kontrolują pobudzanie komórek nerwowych w korze mózgowej stymulujących pobieranie żywności. W całym procesie kluczową rolę odgrywa szlak sygnałowy kontrolowany przez enzym o nazwie autotaksyna (ATX), odpowiedzialny za produkcję kwasu lizofosfatydowego (LPA). Uczeni stwierdzili więc, że w walce z kompulsywnym objadaniem się i otyłością mogłyby pomóc inhibitory autotaksyny.
      Zespół pod kierunkiem profesorów Johanessa Vogta (Uniwersytet w Kolonii), Roberta Nitscha (Uniwersytet w Münster) oraz Thomasa Horvatha (Yale School of Medicine) wykazała, że u ludzi z zaburzonym szlakiem sygnałowym LPA częściej występują otyłość oraz cukrzyca typu II. Dodali do tego spostrzeżenie, że to kontrola pobudzenia neuronów w korze mózgowej przez LPA odgrywa kluczową rolę w kontrolowaniu zachowań związanych z odżywianiem się. Neurony AgRP regulują poziom lizofosfatydylocholiny (LPC) w krwi. LPC dociera do mózgu, gdzie autotaksyna zamienia ją w LPA, stymulujący specyficzne neurony w mózgu, co prowadzi do zwiększenia przyjmowania żywności.
      Przeprowadzone eksperymenty na myszach wykazały, że po okresie postu w krwi zwierząt pojawiło się więcej LPC, co prowadziło do zwiększenia stymulacji LPA w mózgu. Myszy aktywnie poszukiwały jedzenia. Gdy naukowcy podali im inhibitory autotaksyny, poziomy LPC i LPA spadły. Z kolei myszy otyłe, którym regularnie podawano inhibitory autotaksyny, straciły na wadze.
      Zarówno po manipulacji genetycznej, jak i po podaniu inhibitorów ATX zauważyliśmy zarówno znaczące zmniejszenie nadmiernego przyjmowania pożywienia jak i otyłości. Prowadzone przez nas od lat badania nad działaniem LPA na mózg okazały się przydatne również w kontrolowania zachowań związanych z jedzeniem, mówi profesor Vogt. Z kolei profesor Nitsch wskazuje, że dzięki temu może powstać lek do walki z otyłością. Uzyskane przez nas wyniki pokazują, że osoby z zaburzonym szlakiem sygnałowym LPA z większym prawdopodobieństwem są otyłe i cierpią na cukrzycę typu II. To pokazuje, że inhibitory ATX mogą być skutecznym lekiem. Wraz z Instytutem Hansa Knölla w Jenie prowadzimy prace nad stworzeniem takich inhibitorów dla ludzi.
      Więcej na ten temat można przeczytać na łamach Nature.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...