-
Similar Content
-
By KopalniaWiedzy.pl
Białe karły to pozostałości po gwiazdach niedużych gwiazdach. Zbudowane są ze zdegenerowanej materii. Ich masa jest porównywalna z masą Słońca, ale wielkością przypominają Ziemię. Zespół naukowy, na czele którego stoją astronomowie z University of Warwick doniósł o odkryciu drugiego białego karła, który jest pulsarem, obracającą się gwiazdą emitującą wiązkę promieniowania elektromagnetycznego. To niezwykłe odkrycie – dotychczas znaliśmy pulsary, którymi były gwiazdy neutronowe – pozwoli na lepsze zrozumienie ewolucji gwiazd.
Pierwszym odkrytym białym karłem pulsarem był AR Scorpii (AR Sco) zauważony przez uczonych z Warwick w 2016 roku. Teraz odkryli drugą gwiazdę tego typu - J191213.72-441045.1. I w jednym i w drugim przypadku białemu karłowi towarzyszy czerwony karzeł, regularnie omiatany przez promieniowanie emitowane przez pulsar. To powoduje, że nowo odkryty system rozjaśnia się i znacznie przygasa w regularnych odstępach.
Po odkryciu Ar Sco uczeni stwierdzili, że przychylają się do hipotezy dynama, mówiącej, że białe karły mają wewnątrz dynama – czyli generatory elektryczne – którym zawdzięczają swoje potężne pola magnetyczne. Do zweryfikowania tej hipotezy potrzebowali drugiego białego karła pulsara i zaczęli jego poszukiwania. Po 7 latach w końcu się udało.
Nowo odkryty pulsar znajduje się w odległości 773 lat świetlnych od Ziemi i obraca się 300-krotnie szybciej od naszej planety. Jego pełny obrót trwa zaledwie 5,3 minuty, a biały karzeł obiega towarzyszącego mu czerwonego karła w ciągu 4,03 godziny.
Pochodzenie pola magnetycznego to otwarte zagadnienie na wielu polach badawczych astronomii. Jest ono szczególnie trudne w dziedzinie badania białych karłów. Pole magnetyczne białego karła może być ponad milion razy potężniejsze niż pole magnetyczne Słońca, a model dynama pozwala wyjaśnić, dlaczego tak się dzieje. Odkrycie J1912-4410 to kluczowy krok w tym kierunku, mówi doktor Ingrid Pelisoli.
Podczas poszukiwań drugiego białego karła pulsara uczeni wykorzystali dane z różnych źródeł, szukają w nich obiektu o charakterystykach podobnych do AR Sco. Gdy już go znaleźli, zaczęli go badać i potwierdzili, że mają to, czego szukali. Mamy więc potwierdzenie, że istnieje więcej białych karłów pulsarów. Model dynamo przewiduje istnienie takich gwiazd. Zgodnie z nim białe karły pulsary, ze względu na swój zaawansowany wiek, powinny być chłodne. Ich towarzysze powinni być na tyle blisko, by biały karzeł wyciągał z nich materię, co pozwala mu się obracać. Wszystkie te przewidywania się spełniły. Mamy tutaj białego karła o temperaturze niższej niż 13 000 kelwinów, który co pięć minut wykonuje pełny obrót wokół własnej osi i którego oddziaływanie grawitacyjne wywiera duży wpływ na towarzysza, stwierdza Pelisoli.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie z University of Berkeley poinformowali, że odkryta w 2017 roku gwiazda neutronowa jest nie tylko jednym z najszybciej obracających się pulsarów w Drodze Mlecznej. Pochłonęła ona niemal całą masę towarzyszącej jej gwiazdy, stając się najbardziej masywną ze wszystkich znanych nam gwiazd neutronowych.
Pulsar PSR J0952-0607 obraca się 707 razy na sekundę, a jego masa wynosi aż 2,35 mas Słońca. Gdyby była nieco bardziej masywna, całkowicie by się zapadła, tworząc czarną dziurę Jej badania pozwolą na lepsze zrozumienie ekstremalnego środowiska tych niezwykle gęstych obiektów. Niewiele wiemy o tym, jak materia zachowuje się w tak gęstych miejscach, jak jądro atomu uranu. Gwiazda neutronowa przypomina takie wielkie jądro, mówi profesor Alex Filippenko.
Gwiazdy neutronowe są tak gęste, że 1 cm3 ich materii waży około miliarda ton. Są więc najbardziej gęstymi obiektami we wszechświecie. Zaraz po czarnych dziurach. Tych jednych, ukrytych za horyzontem zdarzeń, nie jesteśmy w stanie badać.
PSR J0952-0607 to tzw. „czarna wdowa”. To oczywiste odniesienie do pająków czarnych wdów, wśród których samica pożera po kopulacji znacznie mniejszego samca. Filippenko i profesor Roger W. Romani od ponad dekady badają systemy „czarnych wdów”, starając się określić górną granicę masy, jaką może osiągnąć pulsar.
Dzięki połączeniu pomiarów z wielu systemów czarnych wdów, stwierdziliśmy, że gwiazda neutronowa może osiągnąć masę 2,35 ± 0,17 masy Słońca, stwierdza Romani. Jeśli zaś jest to granica limitu masy gwiazdy neutronowej, gwiazda taka zbudowana jest prawdopodobnie z mieszaniny neutronów oraz kwarków górnych i dolnych, ale nie z egzotycznej materii, takiej jak kwarki dziwne czy kaony. Taki limit wyklucza wiele proponowanych stanów materii, szczególnie egzotycznej materii we wnętrzu gwiazdy, dodaje Romani.
Naukowcy są generalnie zgodni co do tego, że gwiazdy, których masa jądra przekracza 1,4 masy Słońca, zapadają się pod koniec życia, tworząc gęsty kompaktowy obiekt, w którego wnętrzu panuje tak wysokie ciśnienie, że wszystkie atomy tworzą mieszaninę neutronów i kwarków. Powstają w ten sposób gwiazdy neutronowe, które od początku istnienia obracają się. I mimo że w świetle widzialnym świecą zbyt słabo, byśmy mogli je dostrzec, emitują impulsy radiowe, promieniowania rentgenowskiego, a nawet promieniowania gamma, które omiatają Ziemię na podobieństwo latarni morskiej.
Zwykłe pulsary obracają się z prędkością około 1 obrotu na sekundę. Zjawisko to łatwo wyjaśnić naturalnym obrotem gwiazdy z okresu, przed jej zapadnięciem się. Znamy jednak pulsary obracające się znacznie szybciej, nawet do 1000 razy na sekundę. To tak zwane pulsary milisekundowe. Tak szybki obrót trudno jest wytłumaczyć bez odwoływania się do materii z gwiazdy towarzyszącej, która je wchłaniania przez pulsar i napędza jego ruch. Jednak w przypadku niektórych pulsarów milisekundowych nie potrafimy wykryć ich towarzysza. Jedno z wyjaśnień mówi, że już go nie ma, gdyż pulsar wchłonął całą jego materię.
Naukowcy mówią, że gdy towarzysz gwiazdy neutronowej starzeje się i staje się czerwonym olbrzymem, pochodząca z niego materia opada na pulsar, który zaczyna się coraz szybciej obracać. Z obracającej się gwiazdy wydobywa się wiatr cząstek, który uderza w czerwonego olbrzyma i obdziera go z materii. Ten samonapędzający się proces może trwać do czasu, aż czerwony olbrzym skurczy się do wielkości planety, a nawet całkowicie zniknie. Tak właśnie ma dochodzić do pojawienia się samotnych pulsarów milisekundowych.
Pulsar PSR J0952-0607 potwierdza tę hipotezę. Jego towarzyszem jest niewielka gwiazda, która właśnie traci materię i zbliża się do granicy masy planety, a z czasem może całkowicie zniknąć. Obecnie jej masa jest zaledwie 20-krotnie większa od masy Jowisza, ma więc masę 2% masy Słońca. Znajduje się w obrocie synchronicznym względem pulsara, czyli jest zwrócona do niego zawsze tą samą stroną. Przez to temperatura tej strony wynosi ok. 6000 stopni Celsjusza i sama gwiazda świeci na tyle mocno, że można ją dostrzec za pomocą teleskopu.
« powrót do artykułu -
By KopalniaWiedzy.pl
Gwiazdy neutronowe są źródłem najpotężniejszych pól magnetycznych we wszechświecie. Naukowcy z Chińskiej Akademii Nauk donieśli właśnie, że satelita Insight-HXMT zaobserwował gwiazdę o najpotężniejszej indukcji magnetycznej na powierzchni. Z pomiarów wynika, że indukcja na powierzchni gwiazdy znajdującej się w układzie podwójnym Swift J0243.6+6124 wynosi gigantyczne 1,6 miliarda tesli. Dotychczasowy rekord, zmierzony w 2020 roku, wynosił 1 miliard tesli.
O tym, o jak olbrzymich wartościach mówimy niech świadczy fakt, że indukcja potężnych magnesów wykorzystywanych w akceleratorach cząstek czy reaktorach fuzyjnych wynosi kilkanaście tesli. A indukcja pola magnetycznego na powierzchni Ziemi to... 0,000065 tesli. Indukcja magnetyczna Swift J0243.6+6124 jest więc 24 biliony razy większa.
Wspomniany układ podwójny składa się z gwiazdy neutronowej oraz jej towarzysza. Potężna grawitacja gwiazdy neutronowej wyciąga z jej towarzysza gaz, który opada na gwiazdę neutronową, tworząc wokół dysk akrecyjny. Plazma z dysku akrecyjnego opada wzdłuż linii pola magnetycznego na powierzchnię gwiazdy, podążając do biegunów magnetycznych, gdzie wywołuje silne promieniowanie rentgenowskie emitowane w wąskich wiązkach wzdłuż biegunów magnetycznych. Jako że gwiazda się obraca, obserwator widzi pulsujące promieniowanie magnetyczne, stąd taki układ nazywa się pulsarem rentgenowskim.
Z wielu badań wiemy, że energia absorpcji linii promieniowania rentgenowskiego z takiego pulsara odpowiada indukcji magnetycznej na powierzchni gwiazdy neutronowej. Dzięki temu możemy mierzyć tę indukcję badając promieniowanie emitowane przez gwiazdę.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie z University of Wisconsin-Milwaukee odnaleźli najzimniejszego i najsłabiej świecącego białego karła. Gwiazda jest tak zimna, że znajdujący się w niej węgiel skrystalizował i powstał olbrzymi diament wielkości Ziemi.
To naprawdę niezwykły obiekt. Uważamy, że w przestrzeni kosmicznej znajduje się wielka liczba starych białych karłów. Trudno je zobaczyć i nie wiemy, gdzie patrzeć. Nie jest możliwe natrafienie bezpośrednio na nie - mówi profesor David Kaplan.
Białe karły to niezwykle gęste obiekty, które są ostatnim etapem życia gwiazd podobnych do Słońca. Składają się głównie z węgla i tlenu. Stygną i gasną przez miliardy lat. Białe karły trudno jest jednak badać, gdyż ich odnalezienie jest niemal niemożliwe.
Wspomniany biały karzeł, który liczy sobie 11 miliardów lat, został odnaleziony dzięki Green Bank Telescope oraz Very Long Baseline Array. Teleskopy te nie pozwoliły na bezpośrednią obserwację białego karła. Urządzenia badały milisekundowego milisekundowego pulsara PSR J2222-0137, który obraca się z prędkością 30 razy na sekundę.
Obserwacje ujawniły, że pulsar jest grawitacyjnie powiązany z innym obiektem, z którym obiegają się nawzajem w ciągu 2,45 dnia. Obiekt ten to gwiazda neutronowa lub, co bardziej prawdopodobne, niezwykle zimny biały karzeł.
Obserwacje pozwoliły na precyzyjne określenie pozycji pulsara. Znamy jego pozycję z dokładnością lepszą niż 1 piksel - mówi profesor Kaplan. To z kolei daje nadzieję, że uda się bezpośrednio zaobserwować towarzyszącego mu białego karła. Uczeni stwierdzili dotychczas, że masa pulsara wynosi 1,2 masy Słońca, a masa białego karła to 1,05 masy Słońca. Mimo, że towarzysza pulsara ciągle nie zaobserwowano, to jego kołowa orbita stanowi dodatkowy dowód, że to biały karzeł. Gwiazdy neutronowe mają orbity eliptyczne.
« powrót do artykułu -
By KopalniaWiedzy.pl
Gwiazdy neutronowe to najbardziej gęste – nie licząc czarnych dziur – obiekty we wszechświecie. Centymetr sześcienny ich materii waży miliony ton. Naukowcy wciąż je badają próbując znaleźć odpowiedzi na wiele pytań. Chcieliby np. dowiedzieć się, jak wyglądają neutrony ściśnięte tak potężnymi siłami czy gdzie leży granica pojawienia się czarnej dziury.
Naukowcy używający Green Bank Telescope donieśli właśnie o odkryciu najbardziej masywnej gwiazdy neutronowej. Pulsar J0740+6620 ma masę 2,17 większą od masy Słońca, a całość jest upakowana w kuli o średnicy zaledwie 30 kilometrów. To bardzo ważne odkrycie, gdyż z danych dostarczonych przez detektor LIGO, który zarejestrował fale grawitacyjne pochodzące ze zderzenia dwóch gwiazd neutronowych wynika, iż 2,17 masy Słońca to bardzo blisko granicy powstania czarnej dziury.
Gwiazdy neutronowe są tajemnicze i fascynujące. Te obiekty wielkości miasta przypominają ogromne jądro atomowe. Są tak masywne, że mają dziwaczne właściwości. Gdy dowiemy się, jaka może być ich maksymalna masa, poznamy wiele niedostępnych obecnie faktów z astrofizyki, mówi doktorant Thankful Cromartie.
Pulsar J0740+6620 tworzy układ podwójny z białym karłem. To właśnie dzięki temu udało się precyzyjnie określić jego masę. Pulsary emitują bowiem z obu biegunów fale radiowe. Emisja ma miejsce w bardzo regularnych odstępach. Jako, że wspomniany pulsar ma towarzysza, to gdy z ziemskiego punktu widzenia znajduje się za nim, obecność białego karła zagina przestrzeń, co powoduje pojawienie się zjawiska znanego jako opóźnienie Shapiro. Z powodu obecności obiektu zniekształcającego przestrzeń, sygnał radiowy musi przebyć nieco dłuższą drogę, by dotrzeć do Ziemi. W omawianym przypadku opóźnienie wynosi około 10 milisekund. To wystarczy, by na tej podstawie wyliczyć masę białego karła. Gdy już ją znamy, z łatwością da się wyliczyć masę towarzyszącego mu pulsara.
Położenie tego układu podwójnego względem Ziemi stworzyło nam wyjątkową okazję. Istnieje granica, poza którą gęstość we wnętrzu gwiazd neutronowych jest tak wielka, iż grawitacja przezwycięża materię i gwiazda dalej się zapada. Każda kolejna „rekordowo masywna” gwiazda neutronowa, którą odkrywamy, przybliża nas do odkrycia tej granicy i pozwala lepiej zrozumieć zjawiska fizyczne zachodzące przy tak olbrzymich gęstościach, mówi astronom Scott Ransom.
Badania były prowadzone w ramach programu NANOGrav Physics Frontiers Center.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.