Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W 2 dni zabija 80% zarażonych. Badania dają nadzieję na skuteczną walkę z Clostridium septicum

Rekomendowane odpowiedzi

Badania uczonych z The Australian National University mogą doprowadzić do pojawienia się lepszych metod walki z rzadkimi, ale niezwykle śmiertelnymi infekcjami bakteryjnymi. Mowa o bakteriach powodujących gangrenę, sepsę czy tężec. Na szczęście ta grupa bakterii rzadko powoduje infekcje. W USA jest mniej niż 1000 takich przypadków rocznie. My skupiliśmy się bakterii Clostridium septicum, która w ciągu 2 dni zabija 80% zakażonych. Jest niezwykle śmiercionośna, mówi profesor Si Ming Man.

Australijczycy odkryli, że Clostridium septicum bardzo szybko zabija komórki naszego organizmu, gdyż uwalnia toksynę działającą jak młotek. Toksyna ta wybija dziury w komórkach. To, oczywiście, wzbudza alarm w naszym układzie odpornościowym. Jednak gdy ten przystępuje do działania, może wyrządzić więcej szkód niż korzyści. Układ odpornościowych ma dobre zamiary, próbuje zwalczać bakterię. Problem jednak w tym, że w tym procesie zarażone komórki dosłownie eksplodują i umierają. Gdy bakteria mocno się rozprzestrzeni i w całym ciele mamy wiele umierających komórek, dochodzi do sepsy i wstrząsu. Dlatego pacjenci bardzo szybko umierają, mówi uczony.

Obecnie mamy niewiele sposób leczenia w takich przypadkach. Jednak analizy Mana i jego zespołu dają nadzieję, że opcji tych będzie więcej. Nasze badania pokazały, że możemy rozpocząć prace nad nowymi terapiami, na przykład nad wykorzystaniem leków do neutralizacji toksyny. Wykazaliśmy też, że już w tej chwili w testach klinicznych znajdują się leki, które mogą zablokować kluczowy, odpowiedzialny za rozpoznanie toksyny, receptor układu immunologicznego. Takie leki uniemożliwiłyby układowi odpornościowemu zbyt gwałtowną reakcję na toksynę. Łącząc tego typu leki moglibyśmy opracować terapię ratującą życie, dodaje Man.

Dodatkową korzyść odniósłby przemysł, gdyż ta sama bakteria zabija owce i krowy, nowe leki można by więc stosować też w weterynarii.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Sprzątacz wyłączył zamrażarkę w uczelnianym laboratorium, ponieważ zepsuty sprzęt wydawał drażniący dźwięk. W ten sposób zniszczył próbki i inne materiały, niwecząc przeszło dwie dekady badań. Rensselaer Polytechnic Institute w Troy domaga się od firmy, która go zatrudniła, ponad 1 mln dolarów. Kwota ta ma stanowić odszkodowanie i pokryć opłaty prawne.
      Uczelnia nie pozwała sprzątacza, ale zatrudniającą go firmę Daigle Cleaning Systems Inc., wskazując na niewłaściwe przeszkolenie i nadzorowanie personelu. Daigle Cleaning Systems Inc. świadczyła uczelni usługi przez kilka miesięcy 2020 roku (kontrakt opiewał na 1,4 mln dol.).
      Michael Ginsberg, prawnik reprezentujący Rensselaer Polytechnic Institute, podkreślił w wypowiedzi dla CNN-u, że zaistniała sytuacja jest skutkiem ludzkiego błędu. Kluczem do jej interpretacji jest fakt, że firma nie przeszkoliła odpowiednio swojego personelu. Sprzątacz nie powinien bowiem próbować rozwiązywać problemów elektrycznych.
      W zamrażarce znajdowały się m.in. hodowle komórkowe i próbki, w przypadku których, jak napisano w pozwie złożonym w Sądzie Najwyższym Hrabstwa Rensselaer, niewielkie wahania temperatury rzędu trzech stopni mogły wyrządzić katastrofalne szkody.
      Materiał przechowywany w zamrażarce wymagał zachowania temperatury -80°C. Prof. K.V. Lakshmi, dyrektorka Baruch '60 Center For Biochemical Solar Energy Research, stwierdziła, że alarm włączył się ok. 14 września 2020 r., bo temperatura wzrosła do -78°C. Zespół naukowców ustalił, że mimo to próbkom i kulturom nic się nie stało. Ponieważ przez ograniczenia pandemiczne naprawa mogła się rozpocząć dopiero po tygodniu, na drzwiczkach zamrażarki umieszczono ostrzegający napis: Urządzenie piszczy, bo znajduje się w naprawie. Proszę go nie przesuwać ani nie odłączać. Nie ma potrzeby sprzątania tego obszaru. Jeśli chcesz wyłączyć dźwięk, przez 5-10 s przyciśnij guzik wyciszania alarmu. Zamiast tego 17 września sprzątacz wyłączył obwód zasilający zamrażarkę.
      Nim naukowcy zorientowali się, co się stało, temperatura podniosła się aż o 50 stopni. Większość próbek uległa zniszczeniu. W raporcie sporządzonym przez uczelniany zespół ds. bezpieczeństwa publicznego napisano, że sprzątacz myślał, że włącza obwód zasilający, tymczasem w rzeczywistości było dokładnie na odwrót. Podczas rozmów z prawnikami nadal wydaje się przekonany, że nie zrobił nic złego i próbował po prostu pomóc.
      Badania nad fotosyntezą prowadzone przez prof. K.V. Lakshmi mogły być przełomowe dla dalszego rozwoju paneli słonecznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Endometrioza to poważna choroba, która dotyka do 10% kobiet w wieku rozrodczym. Jej najbardziej widocznym objawem jest ból, niejednokrotnie tak mocny i długotrwały, że uniemożliwia normalne funkcjonowanie. W wyniku choroby komórki wyściółki macicy, endometrium, przemieszczają się po organizmie osadzając się i rozrastając w różnych miejscach, niszcząc organizm i życie kobiety. Choroba ta jest jedną z najczęstszych przyczyn niepłodności kobiet. Mimo to, wciąż nie znamy jej przyczyn.
      W ostatnim czasie coraz więcej uwagi zwraca się na potencjalną rolę mikroorganizmów w rozwoju endometriozy. Rozwój endometriozy próbuje się powstrzymywać za pomocą terapii hormonalnych i zabiegów chirurgicznych. Najczęściej są to jednak półśrodki, a choroba nawraca przez kilkadziesiąt lat, aż do okresu menopauzy. Chcielibyśmy znaleźć nowe sposoby leczenia. Jednak najpierw musimy się dowiedzieć, dlaczego ludzie cierpią na endometriozę, mówi specjalizująca się w biologii nowotworów Yutaka Kondo z Uniwersytetu w Nagoi.
      Pani Kondo wraz ze swoim zespołem przebadała tkankę endometrium 155 Japonek. I okazało się, że u 64% kobiet z endometriozą występują mikroorganizmy z rodzaju Fusobacterium. U kobiet zdrowych bakterie te znaleziono jedynie u 7% badanych. Tymczasem wiemy, że Fusobakterium, często występujące w ustach, jelitach i pochwie może powodować różne choroby, jak np. choroby przyzębia.
      Naukowcy postanowili sprawdzić, czy Fusobacterium może mieć wpływ na rozwój endometriozy. Dlatego też przeszczepili tkankę endometrium od jednych do jamy brzusznej innych myszy. Zgodnie z oczekiwaniami, w ciągu kilku tygodni u myszy pojawiły się blizny typowe dla endometriozy. Okazało się, że jest ich więcej i są one większe u tych myszy, którym jednocześnie przeszczepiono Fusobacterium. Myszy zaczęto więc leczyć, podawanymi dopochwowo, antybiotykami – metronidazolem lub chloramfenikolem. Doprowadziło to do zmniejszenia liczby i rozmiarów ognisk endometriozy. Japończycy prowadzą obecnie badania kliniczne na kobietach z endometriozą, by sprawdzić, czy podawanie antybiotyków przyniesie im przynajmniej częściową ulgę.
      Badania są obiecujące, ale mają poważne ograniczenia. Myszy nie są bowiem dobrymi modelami do badań nad endometriozą, gdyż ani nie menstruują, ani nie tworzą się u nich spontanicznie blizny spowodowane endometriozą. Dlatego też konieczne jest prowadzenie większej liczby badań na ludziach. Ponadto Japończycy skupili się na badaniu blizn tworzących się na jajnikach, tymczasem u ludzi w wyniku endometriozy mogą powstawać one w całym organizmie i na wszystkich organach wewnętrznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Metale ziem rzadkich wykorzystujemy w smartfonach, telewizorach, silnikach elektrycznych czy turbinach wiatrowych. Są one szeroko rozpowszechnione w skorupie ziemskiej. Jednak występują w tak niewielkiej koncentracji, że ich pozyskanie nie jest proste. To proces bardzo energochłonny, składający się z setek kroków oraz wymagający użycia toksycznych chemikaliów. Okazuje się jednak, że można go uprościć, uczynić tańszym, czystszym i bezpieczniejszym dzięki bakteriom wyizolowanym właśnie z pączków dębu szypułkowego.
      Naukowcy z Pennsylvania State University odkryli mechanizm, za pomocą którego bakterie mogą selektywnie wybierać pomiędzy metalami ziem rzadkich. Zbadali, jak ten mechanizm działa i opracowali metodę szybkiego i efektywnego oddzielania podobnych pierwiastków w temperaturze pokojowej. Metoda ta może przyczynić się do powstania bardziej efektywnych, tańszych i przyjaznych dla środowiska technologii pozyskiwania i recyklingu pierwiastków ziem rzadkich.
      Procesy biologiczne potrafią odróżnić metale ziem rzadkich od wszystkich innych metali, a teraz wykazaliśmy, że potrafią też odróżniać od siebie poszczególne metale ziem rzadkich, decydując, który jest dla nich użyteczny, a który nie, mówi główny autor badań, profesor Joseph Cotruvo. Wykazaliśmy, jak wykorzystać te właściwości do pozyskiwania i oddzielania pierwiastków ziem rzadkich. Niezależnie od tego, czy wydobywasz metale ziem rzadkich ze skał, czy też z poddawanych recyklingowi urządzeń, musisz je od siebie oddzielić, by uzyskać czysty metal. Nasza metoda, przynajmniej teoretycznie, może znaleźć zastosowanie niezależnie od metody pozyskiwania pierwiastka, dodaje uczony.
      Do grupy pierwiastków ziem rzadkich zaliczamy 15 lantanowców oraz iterb i skand. Są one podobne pod względem chemicznym, mają podobne rozmiary i często występują razem. Znajdują jednak różne zastosowania technologiczne.
      Obecnie podczas separacji poszczególnych pierwiastków ziem rzadkich wykorzystuje się olbrzymie ilości toksycznych chemikaliów, takich jak nafta czy fosfoniany. Proces separacji składa się nawet z setek poszczególnych kroków, koniecznych do uzyskania czystego metalu. Jeden problem to oddzielenie tych pierwiastków od skał. Gdy już to się uda, mamy drugi problem jakim jest oddzielenie poszczególnych metali od siebie. To największe i najbardziej interesujące wyzwanie, gdyż pierwiastki te są do siebie podobne. My wzięliśmy naturalnie występującą proteinę, którą nazywamy lanmoduliną (LanM) i przygotowaliśmy ją tak, by rozróżniała te pierwiastki, wyjaśnia Cotruvo.
      Cotruvo i jego koledzy wiedzieli, że natura od milionów lat potrafi wykorzystywać pierwiastki ziem rzadkich. Dlatego właśnie w naturze poszukiwali rozwiązania problemu. Przed sześciu laty wyizolowali lanmodulinę z jednej z bakterii i wykazali, że 100 milionów razy lepiej łączy się ona z lantanowcami niż z innymi metalami. Później udowodnili, że można ją wykorzystać do uzyskania pierwiastków ziem rzadkich z mieszaniny, w której znajduje się wiele innych metali. Jednak ta pierwsza lanmodulina radziła sobie znacznie gorzej z zadaniem odróżniania poszczególnych pierwiastków ziem rzadkich od siebie.
      Podczas najnowszych badań Cotruvo i jego zespół znaleźli setki naturalnych protein mniej więcej podobnych do pierwszej zidentyfikowanej przez sobie lanmoduliny. Jednak skupili się na jednej, która była wystarczająco różna – różnice dochodziły do 70% – spodziewając się, że będzie ona miała nieco różne właściwości. Wybrana przez nich lanmodulina występuje u bakterii Hansschlegelia quercus wyizolowanej z pączków dębu szypułkowego.
      Okazało się, że gdy lanmodulina z tej bakterii łączy się z lżejszymi lantanowcami, jak neodym, tworzy silne dimery z identycznymi fragmentami lanmoduliny. Gdy zaś łączy się z cięższymi lantanowcami, jak dysproz, woli się nie łączyć, pozostając monomerem. To było zaskoczenie, gdyż pierwiastki te są bardzo podobnych rozmiarów. Tymczasem ta lanmodulina jest zdolna do rozróżnienia wielkości w skalach dla nas niewyobrażalnych, wynoszących bilionowe części metra. Wyczuwa różnice mniejsze niż 1/10 średnicy atomu, zachwyca się Cotruvo.
      Gdy naukowcy szczegółowo przeanalizowali wpływ łączenia się z lantanowcami na tworzenie dimerów przez lanmodulinę, okazało się, że wszystko zależy od pojedynczego aminokwasu, który zajmuje inną pozycję przy łączeniu się z lekkim lantanowcem niż podczas łączenia się z cięższym lantanowcem. Pozycja tej proteiny decyduje o interakcji z innym monomerem, więc i o preferencji co do tworzenia dimerów lub pozostaniu monomerem. Gdy naukowcy usunęli ten aminokwas z lanmoduliny, proteina znacznie gorzej radziła sobie z odróżnianiem poszczególnych lantanowców.
      Uzbrojeni w tę wiedzę naukowcy Penn State podjęli współpracę z uczonymi z Lawrence Livermore National Laboratory i wykazali, że lanmodulinę można wykorzystać do oddzielenia od siebie neodymu i dysprozu, najważniejszych składników magnesów stałych. A można to uczynić w jednym kroku, w temperaturze pokojowej, bez wykorzystywania żadnych organicznych rozpuszczalników.
      Nie jesteśmy pierwszymi, którzy zauważyli, że dimeryzacja może być metodą na oddzielanie metali, szczególnie za pomocą syntetycznych molekuł. Jednak jako pierwsi zaobserwowaliśmy takie zjawisko występujące w naturze w odniesieniu do lantanowców. To badania podstawowe, które potencjalnie można wykorzystać w przemyśle. Odkrywamy sekrety natury i uczymy się od niej, jak być lepszymi chemikami, dodaje Cotruvo. Zdaniem uczonego, najnowsza praca to dopiero początek. Cotruvo uważa, że z czasem nauczymy się rozwiązywać najtrudniejszy z problemów – efektywnie oddzielać od siebie pierwiastki ziem rzadkich, które bezpośrednio ze sobą sąsiadują w układzie okresowym.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Oksfordzkiego, Instytutu Centrum Zdrowia Matki Polki w Łodzi, Uniwersytetu Harvarda, Uniwersytetu Łódzkiego, japońskiego RIKEN, fińskiego Uniwersytetu w Oulu i 20 innych instytucji naukowych, opublikowali wyniki największych na świecie badań nad genetycznymi podstawami endometriozy. W ich trakcie przeanalizowali genomy 60 674 kobiet cierpiących na endometriozę oraz 701 926 pań, których ta choroba nie dotknęła.
      Badania dostarczyły przekonujących dowodów na istnienie wspólnych podstaw genetycznych dla endometriozy i innych rodzajów bólu pozornie z nią nie związanych, w tym z migrenami, bólem pleców i rozsianymi po różnych częściach ciała. Okazało się również, że istnieje różnica w podstawach genetycznych pomiędzy endometriozą dotykającą jajników a przypadkami, gdy choroba manifestuje się w inny sposób. Odkrycie może otworzyć drogę do zaprojektowania leków uwzględniających różne typy endometriozy oraz do zmian sposobu leczenia bólu w endometriozie.
      Endometrioza ma zgubny wpływ na jakość życia dotkniętych nią kobiet. Szacuje się, że cierpi na nią 5–10 procent (190 milionów) pań w wieku reprodukcyjnym. Choroba, w wyniku której komórki wyściółki macicy (endometrium), rozprzestrzeniają się poza macicę, powoduje ciągłe silne bóle, chroniczny stan zapalny, bezpłodność, chroniczne zmęczenie, depresję. Endometrium może pojawić się w wielu niespodziewanych miejscach – chociażby na jelitach, pęcherzu, nerkach – powodując niezwykle silne bóle i powoli uszkadzając zaatakowane organy. Sytuację kobiet pogarsza fakt, że endometrioza jest bardzo późno diagnozowana (średnio 8 lat od pojawienia się pierwszych objawów), a jedyną pewną metodą diagnozy jest przeprowadzenie zabiegu chirurgicznego. Obecnie nie istnieje żaden sposób leczenia endometriozy. Kobiety na nią cierpiące czekają wielokrotne zabiegi chirurgiczne oraz leczenie hormonalne z jego licznymi skutkami ubocznymi. Niewiele też wiadomo o przyczynach endometriozy. Istnieją jednak przesłanki wskazujące, że pewną rolę odgrywają tutaj czynniki genetyczne.
      Dlatego też międzynarodowy zespół naukowy postanowił przyjrzeć się tej kwestii. Uczeni zidentyfikowali w genomie 42 miejsca, w których mogą pojawiać się wersje genów zwiększające ryzyko wystąpienia endometriozy. Łącząc te warianty z profilami molekuł występujących w endometrium i we krwi, zidentyfikowali cały liczne geny, które mogą brać udział w rozwoju choroby. Dzięki tej wiedzy można będzie zacząć prace nad lekami dostosowanymi do podtypu choroby. Okazało się na przykład, że warianty niektórych genów są silniej powiązane z endometriozą jajników niż z jej rozprzestrzenianiem się w miednicy.
      Przede wszystkim zaś zauważyli, że wiele genów związanych z endometriozą ma też związek z odczuwaniem bólu. Okazało się, że istnieją podobieństwa genetyczne pomiędzy endometriozą a wieloma rodzajami chronicznego bólu. Być może uda się tę wiedzę wykorzystać do opracowania niehormonalnych leków zwalczających ból w endometriozie lub też przystosować obecnie istniejące metody leczenia bólu dla kobiet z endometriozą.
      Endometrioza jest obecnie uznawana za jeden z głównych problemów zdrowotnych negatywnie wpływających na życie kobiet. Dzięki wykorzystaniu genomów ponad 60 000 kobiet z endometriozą oraz bezprecedensowej współpracy 25 instytucji naukowych zdobyliśmy olbrzymią ilość informacji na temat genetycznych podstaw endometriozy. Pozwoli to na opracowanie nowych metod leczenia, z korzyścią dla milionów kobiet na całym świecie, mówi profesor Krina Zondervan z Endometriosis CaRe Centre na Uniwersytecie Oksfordzkim.
      Artykuł The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions został opublikowany w najnowszym numerze Nature Genetics.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Marta Kozakiewicz-Latała z Wydziału Farmaceutycznego Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu (UMW) dostała ponad 195 tys. zł na prace związane z wykorzystaniem druku 3D (technologii przyrostowej) do wytwarzania zaawansowanych postaci leków.
      Jej projekt „Zrozumienie mieszalności układów lek/polimer/plastyfikator i jej wpływu na właściwości mechaniczne polimerowych filamentów do przetwarzania w technologii przyrostowej FDM” doceniono w konkursie PRELUDIUM 21 Narodowego Centrum Nauki.
      W 2015 r. amerykańska Agencja Żywności i Leków (Food and Drug Administration, FDA) wydała pozwolenie na wprowadzenie do obrotu pierwszego leku uzyskiwanego na drodze druku 3D. Chodzi o stosowany w terapii epilepsji Spritam firmy Aprecia Pharmaceuticals.
      W Europie nie zarejestrowano jednak dotąd ani jednego wytwarzanego w ten sposób produktu leczniczego. Stąd projekt Kozakiewicz-Latały, która z opiekunem merytorycznym i promotorem dr. hab. Karolem Nartowskim będzie pracować wg paradygmatu knowledge based design; naukowcy chcą zrozumieć zjawiska fizyczne, które - jak napisano w komunikacie - mają znaczenie dla rozwoju technologii przyrostowych i wytwarzania spersonalizowanych leków.
      By móc uzyskiwać leki na drodze druku 3D, trzeba precyzyjnie określić proporcje i właściwości stosowanych materiałów. Miesza się je ze sobą w postaci sproszkowanej i poddaje tłoczeniu (ekstruzji) na gorąco. Finalnie muszą stworzyć mieszankę jednorodną, zarówno pod względem fizycznym, jak i molekularnym, co będzie miało wpływ na stabilność i jednolitość zawartości substancji aktywnej w wydrukowanych tabletkach - podkreślono w komunikacie.
      Kozakiewicz-Latała tłumaczy, że zadaniem jej minizespołu będą badania nad mieszalnością leków z polimerami i substancjami plastycznymi oraz wpływem fazy leku, amorficznej lub krystalicznej, na właściwości mechaniczne filamentów [materiału wykorzystywanego do druku]. Uzyskany filament musi, oczywiście, mieć jakość farmaceutyczną.
      Naukowcy wspominają o różnorakich efektach projektu. Po pierwsze, proces produkcji można by dostosować do potrzeb konkretnych pacjentów, dzięki czemu dałoby się poprawić jakość ich życia, a zarazem ograniczyć ryzyko wystąpienia skutków ubocznych. Po drugie, wykorzystanie druku przestrzennego pozwala uzyskać lek o dowolnym kształcie, a to z kolei daje kontrolę nad dostępnością farmaceutyczną (ilością substancji czynnej, jaka uwalnia się z preparatu farmaceutycznego w jednostce czasu). Po trzecie wreszcie, w poszczególnych warstwach, które uzyskiwano by z różnych materiałów, dałoby się umieścić inne substancje czynne. Dzięki temu ktoś, kto musi przyjmować szereg leków, mógłby sięgnąć po tylko jedną spersonalizowaną pigułkę.
      Planowany czas trwania projektu to 36 miesięcy; jego zakończenie ma nastąpić w połowie stycznia 2026 roku.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...