Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

NASA przedłuża 8 misji kosmicznych

Recommended Posts

NASA zdecydowała o wydłużeniu 8 misji kosmicznych prowadzonych przez Planetary Science Division. Wydłużone zostaną misje Mars Odyssey, Mars Reconnaissance Orbiter, MAVEN, Mars Science Laboratory (łazik Curiosity), InSight, Lunar Reconnaissance Orbiter, OSIRIS-REx i New Horizons. Jeśli wykonujące je pojazdy będą równie sprawne jak dotychczas, to popracują jeszcze przez kolejne trzy lata. Wyjątkiem są OSIRIS-REx oraz InSight.

Propozycji wydłużenia każdej z misji przyjrzał się niezależny zespół ekspertów z instytucji naukowych, przemysłu oraz NASA. W pracach tych zespołów brało udział łącznie ponad 50 specjalistów. Nad ich pracami czuwało dwóch niezależnych przewodniczących-recenzentów.

Wydłużenie misji daje nam możliwość uzyskanie dodatkowych korzyści z olbrzymich inwestycji poczynionych przez NASA, pozwalając na osiągnięcie kolejnych celów naukowych znacznie niższym kosztem niż koszt organizowania nowych misji, mówi Lori Glaze, dyrektor Planetary Science Division, któremu podlegają te misje.

Misja OSIRIS-REx, po przysłaniu w przyszłym roku próbek asteroidy na Ziemię, zmieni się – o czym wcześniej informowaliśmy – w OSIRIS-APEX i poleci badać asteroidę Apophis. Potrwa ona kolejnych 9 lat. Natomiast nowym zadaniem misji MAVEN (Mars Atmosphere and Volatile Evolution) będzie zbadania interakcji pomiędzy atmosferą a polem magnetycznym Marsa w czasie najbliższego maksimum słonecznego.

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), która wylądowała na Marsie w 2018 roku, to jedyna pozaziemska stacja sejsmiczna. W ramach wydłużonej misji nadal będzie monitorowała aktywność sejsmiczną oraz pogodę Czerwonej Planety. Niestety, na panelach słonecznych urządzenia nagromadziło się sporo pyłu, przez co generują one niewiele energii. Jeśli nie zostaną one oczyszczone przez jeden z wielu wirów pyłowych, InSight popracuje jeszcze co najwyżej kilka miesięcy.

Lunar Reconnaissance Orbiter krąży na orbicie Księżyca od 2009 roku. NSA już po raz kolejny przedłuży jego misję polegającą na badaniu powierzchni i geologii Srebrnego Globu. Pojazd będzie obserwował nowe obszary Księżyca, dostarczy niezwykle szczegółowych fotografii i będzie wsparciem dla planowanego powrotu ludzi na Księżyc.

Mars Science Laboratory i wchodzący w skład misji łazik Curiosity pracują na Marsie od 2012 roku. Łazik przebył już trasę o długości 27 km, badając Krater Gale. W ramach czwartego już wydłużenia misji Curiosity ma wspiąć się wyżej i zbadać bogate w siarkę warstwy, które mogą zdradzić wiele szczegółów na temat obecności wody na Czerwonej Planecie.

NASA zdecydowała też o wydłużeniu misji New Horizons. To sonda, która w 2015 roku przeleciała w pobliżu Plutona, a w 2019 przeszła do historii odwiedzając Arrokoth (Ultima Thule), najdalszy zbadany przez ziemski pojazd obiektu Układu Słonecznego.. Misja zostanie przedłużona po raz drugi. Zadanie sondy będzie polegało na dalszym badaniu obszarów położonych w odległości 63 jednostek astronomicznych od Ziemi. Przypomnijmy, że jednostka astronomiczna to średnia odległość pomiędzy Słońcem a Ziemią. New Horizons może potencjalnie przeprowadzić multidyscyplinarne obserwacje związane z Układem Słonecznym, które wchodzą w zakres obowiązków Wydziału Helioferycznego i Wydziału Astrofizycznego NASA. Szczegóły tych zadań mają zostać podane w przyszłości.

Dwie ostatnie misje są związane z Marsem. Mars Odyssey od 2001 roku znajduje się na orbicie Marsa, a w roku 2010 stała się najdłużej działającą misją na Marsie. Obecnie jest to najdłużej działający w historii pojazd znajdujący się na orbicie planety innej niż Ziemia. Kolejne zadania, jakie jej przydzielono to nowe badania termiczne skał i lodu pod powierzchnią Marsa, badanie promieniowania oraz kontynuacja obserwacji klimatycznych. Dodatkowo Mars Odyssey zapewnia łączność długodystansową pomiędzy Ziemią a innymi marsjańskimi misjami. Pojazd ma jednak ograniczoną ilość paliwa, więc czas trwania jego misji może być ograniczony.

Wokół Czerwonej Planety krąży też Mars Reconnaissance Orbiter, który dostarczył już olbrzymich ilości informacji na temat procesów zachodzących na powierzchni. W ramach 6. już przedłużenia misji MRO ma badań ewolucję powierzchni, lód, aktywność geologiczną, atmosferę i klimat Marsa. MRO również spełnia rolę stacji przekaźnikowej pomiędzy Marsem a Ziemią. Wraz z decyzją o wydłużeniu misji MRO postanowiono całkowicie wyłączyć instrument CRISM (Compact Reconnaissance Imaging Spectrometer for Mars). To spektrometr pracujący w świetle widzialnym i bliskiej podczerwieni, który dostarczał szczegółowych informacji na temat minerałów na powierzchni planety. Doszło w nim do awarii jednego z elementów chłodzących, przez co jeden z jego dwóch spektrometrów przestał działać. CRISM zostanie więc w ogóle wyłączony.

Obecnie w Układzie Słonecznym znajduje się 14 pojazdów zarządzanych przez Planetary Science Division. Wydział pracuje też nad przygotowaniem kolejnych 12 misji i bierze udział w 7 innych, w których jest partnerem agencji kosmicznych z innych krajów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Za nieco ponad tydzień wystartuje misja Psyche, która ma za zadanie zbadanie pochodzenia jąder planetarnych. Celem misji jest asteroida 16 Psyche, najbardziej masywna asteroida typu M, która w przeszłości – jak sądzą naukowcy – była jądrem protoplanety. Jej badanie to główny cel misji, jednak przy okazji NASA chce przetestować technologię, z którą eksperci nie potrafią poradzić sobie od dziesięcioleci – przesyłanie w przestrzeni kosmicznej danych za pomocą lasera.
      Ludzkość planuje wysłanie w dalsze części przestrzeni kosmicznej więcej misji niż kiedykolwiek. Misje te powinny zebrać olbrzymią ilość danych, w tym obrazy i materiały wideo o wysokiej rozdzielczości. Jak jednak przesłać te dane na Ziemię? Obecnie wykorzystuje się transmisję radiową. Fale radiowe mają częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja z jego użyciem byłaby nawet 100-krotnie szybsza. Dlatego też naukowcy od dawna próbują wykorzystać lasery do łączności z pojazdami znajdującymi się poza Ziemią.
      Olbrzymią zaletą komunikacji laserowej, obok olbrzymiej pojemności, jest fakt, że wszystkie potrzebne elementy są niewielkie i ulegają ciągłej miniaturyzacji. A ma to olbrzymie znaczenie zarówno przy projektowaniu pojazdów wysyłanych w przestrzeń kosmiczną, jak i stacji nadawczo-odbiorczych na Ziemi. Znacznie łatwiej jest umieścić w pojeździe kosmicznym niewielkie elementy do komunikacji laserowej, niż podzespoły do komunikacji radiowej, w tym olbrzymie anteny.
      Gdyby jednak było to tak proste, to od dawna posługiwalibyśmy się laserami odbierając i wysyłając dane do pojazdów poza Ziemią. Tymczasem inżynierowie od dziesięcioleci próbują stworzyć system skutecznej komunikacji laserowej i wciąż im się to nie udało. Już w 1965 roku astronauci z misji Gemini VII próbowali wysłać z orbity sygnał za pomocą ręcznego 3-kilogramowego lasera. Próbę podjęto na długo zanim w ogóle istniały skuteczne systemy komunikacji laserowej. Późniejsze próby były bardziej udane. W 2013 roku przesłano dane pomiędzy satelitą LADEE, znajdującym się na orbicie Księżyca, a Ziemią. Przeprowadzono udane próby pomiędzy Ziemią a pojazdami na orbicie geosynchronicznej, a w bieżącym roku planowany jest test z wykorzystanim Międzynarodowej Stacji Kosmicznej. Psyche będzie pierwszą misją, w przypadku której komunikacja laserowa będzie testowana za pomocą pojazdu znajdującego się w dalszych partiach przestrzeni kosmicznej.
      Psyche będzie korzystała ze standardowego systemu komunikacji radiowej. Na pokładzie ma cztery anteny, w tym 2-metrową antenę kierunkową. Na potrzeby eksperymentu pojazd wyposażono w zestaw DSOC (Deep Space Optical Communications). W jego skład wchodzi laser podczerwony, spełniający rolę nadajnika, oraz zliczająca fotony kamera podłączona do 22-centymetrowego teleskopu optycznego, działająca jak odbiornik. Całość zawiera matrycę detektora składającą się z nadprzewodzących kabli działających w temperaturach kriogenicznych. Dzięki nim możliwe jest niezwykle precyzyjne zliczanie fotonów i określanie czasu ich odbioru z dokładnością większa niż nanosekunda. To właśnie w fotonach, a konkretnie w czasie ich przybycia do odbiornika, zakodowana będzie informacja. Taki system, mimo iż skomplikowany, jest mniejszy i lżejszy niż odbiornik radiowy. A to oznacza chociażby mniejsze koszty wystrzelenia pojazdu. Również mniejsze może być instalacja naziemna. Obecnie do komunikacji z misjami kosmicznymi NASA korzysta z Deep Space Network, zestawu 70-metrowych anten, które są drogie w budowie i utrzymaniu.
      Komunikacja laserowa ma wiele zalet, ale nie jest pozbawiona wad. Promieniowanie podczerwone jest łatwo blokowane przez chmury i czy dym. Mimo tych trudności, NASA nie rezygnuje z prób. System do nadawania i odbierania laserowych sygnałów ma znaleźć się na pokładzie misji Artemis II, która zabierze ludzi poza orbitę Księżyca. Jeśli się sprawdzi, będziemy mogli na żywo obserwować to wydarzenie w kolorze i rozdzielczości 4K.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył idealną sałatkę dla astronautów – jest ona optymalna pod względem odżywczym i zawiera składniki, które można wyhodować na pokładzie pojazdu kosmicznego. W stworzeniu sałatki pomógł model komputerowy, któremu dostarczono danych z badań NASA dotyczących codziennego zapotrzebowania astronautów na składniki odżywcze.
      Idealna kosmiczna sałatka zawiera ściśle odmierzoną ilość soi, maku, jęczmienia, jarmużu, orzeszków ziemnych, batatów i słonecznika. Przepis na nią to wspólne dzieło ekspertów ds. farmakologii kosmicznej, rolnictwa i badań nad żywieniem z University of Adelaide i University of Nottingham. Symulowaliśmy połączenie 6–8 roślin, które zapewniają wszystkie składniki odżywcze potrzebne astronautom. Ich wymagania różnią się od tego, czego potrzebują ludzie na Ziemi. Istnieją dziesiątki roślin mogących zaspokoić potrzeby żywieniowe astronautów, jednak chcieliśmy znaleźć takie rośliny, które mają jak najwięcej składników odżywczych, ich mniejsze ilości dostarczają dużej ilości kalorii i które mogą być uprawiane na niewielkiej przestrzeni, wyjaśnia profesor Volker Hessel.
      Naukowcy wzięli pod uwagę ponad 100 różnych roślin. Na początku wybrali z nich rośliny, które dostarczą wszystkich składników odżywczych oraz odpowiedniej ilości kalorii, a do ich zapewnienia nie trzeba będzie zjeść więcej, niż ludzie zwykle jedzą na Ziemi. Ze względu na ograniczenia podczas podróży kosmicznych założono też, że sałatka idealna nie może składać się więcej niż z 10 składników, muszą być to rośliny nadające się do uprawy hydroponicznej w kosmosie, których uprawa zajmie jak najmniej miejsca. Ponadto rośliny musiały mieć minimalne wymagania dotyczące nawożenia, by uniknąć konieczności zabierania w podróż zbyt dużej ilości nawozu. Ważny był też wpływ składników sałatki na nastrój, zatem pod uwagę brano kolor, smak, teksturę, świeżość i zapach produktów. Pożywienie jest niezbędnym elementem zdrowia i szczęścia, więc trzeba wziąć pod uwagę wiele czynników, wyjaśnia Shu Liang z University of Nottingham.
      Teraz naukowcy chcą zaprojektować na potrzeby długotrwałych misji kosmicznych system, w którym uprawiane będą składniki niezbędne do przygotowania kosmicznej sałatki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Weteran badań Marsa, łazik Curiosity, od pewnego czasu wykonuje zdjęcia chmur na Czerwonej Planecie. Niedawno przysłał na Ziemię wyjątkowe obrazy, w tym pierwszą sfotografowaną na Marsie tak wyraźną śreżogę, czyli promienie słoneczne przeświecające przez warstwę chmur.
      Większość chmur na Marsie znajduje się na wysokości nie większej niż 60 km. Jednak chmury na najnowszych obrazach wydają się być znacznie wyżej, gdzie jest wyjątkowo zimno. Dlatego naukowcy przypuszczają, że tworzy je zamarznięty dwutlenek węgla.
      Obserwując kiedy, gdzie i na jakich wysokościach formują się marsjańskie chmury, naukowcy mogą dowiedzieć się więcej na temat składu atmosfery Czerwonej Planety, jej temperatury oraz wiejących w niej wiatrów.
      Przed kilkoma tygodniami łazik sfotografował nawet chmury iryzujące. Iryzacja oznacza, że cząstki znajdujące się w danej części chmury są identycznej wielkości. Patrząc na zmiany koloru, widzimy zmiany wielkości cząstek, a to pokazuje nam ewolucję chmury w czasie, wyjaśnia Mark Lemmon ze Space Science Institute w Boulder.
      Łazik Curiosity trafił na Marsa w sierpniu 2012 roku. Pracuje w kraterze Gale i dotychczas przebył ponad 29 kilometrów po powierzchni Czerwonej Planety. Bada tam pierwiastki niezbędne do powstania życia, poszukuje śladów procesów biologicznych, przygląda się składowi powierzchni Marsa, prowadzi badania ewolucji atmosfery, obiegu wody i promieniowania na powierzchni planety. To czwarty z pięciu łazików, jakie NASA wysłała na Marsa i, obok Perseverance, jeden z dwóch obecnie działających.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Centrum Badań Kosmicznych PAN zakończyła się budowa modelu inżynierskiego instrumentu GLOWS (GLObal solar Wind Structure). GLOWS to fotometr, który będzie liczył fotony odpowiadające długości fali promieniowania Lyman-α (121,56 nm). Zostanie on zainstalowany na pokładzie sondy kosmicznej IMAP (The Interstellar Mapping and Acceleration Probe), która rozpocznie swoją misję w 2025 roku.
      Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.
      Polski GLOWS będzie jednym z 10 instrumentów naukowych znajdujących się na pokładzie IMAP. Jego oś optyczna będzie odchylona o 75 stopni od osi obrotu satelity. Wraz z obrotem IMAP GLOWS będzie skanował okrąg, który codziennie będzie się przesuwał wraz ze zmianą orientacji całego IMAP. W ramach przygotowania eksperymentu zaprojektowaliśmy cały przyrząd: układ optyczny, elektronikę, system zasilania elektrycznego, oprogramowanie do zbierania danych na pokładzie i ich transmisji na Ziemię oraz koncepcję systemu przetwarzania danych na Ziemi, informuje profesor Maciej Bzowski, szef zespołu GLOWS.
      Zbudowaliśmy komputerowy model poświaty heliosferycznej, zbadaliśmy tło pozaheliosferyczne oczekiwane w eksperymencie, zidentyfikowaliśmy i wprowadziliśmy do modelu znane źródła astrofizyczne promieniowania Lyman-alfa, zbudowaliśmy listę gwiazd, które posłużą do kalibracji przyrządu. Zbudowaliśmy też prototyp GLOWS i uruchomiliśmy go w warunkach laboratoryjnych. Wreszcie sprawdziliśmy, że przyrząd widzi promieniowanie Lyman-alfa, które ma obserwować w kosmosie. Oznacza to, że zarejestrowaliśmy pierwsze światło, dodaje uczony.
      GLOS to pierwszy całkowicie polski instrument i eksperyment przygotowany na misję NASA. Otrzymaliśmy możliwość zarówno zaplanowania eksperymentu, zbudowania absolutnie własnego przyrządu i śledzenia rejestrowanych przez niego danych. Sądzę też, że jako pierwsi będziemy mogli przedstawić własne wyniki tych unikatowych pomiarów. Jesteśmy przekonani, że wkrótce po tym przedstawimy na forum międzynarodowym potwierdzenie naszych teorii które, były inspiracją tego kluczowego eksperymentu, podkreśliła profesor Iwona Stanisławska, dyrektor CBK PAN.
      Przed trzema miesiącami dokonano Critical Design Review instrumentu. Obok Polaków wzięli w nim udział m.in. eksperci z NASA, Uniwersytetu Johnsa Hopkinsa i Southwest Research Institute. Przegląd wypadł pomyślnie, co oznacza, że wydano zgodę na rozpoczęcie budowy właściwego urządzenia, które poleci w kosmos.
      Prace przy GLOWS pozwalają naszym naukowcom zdobyć cenne doświadczenie i umiejętności. Mogą one skutkować otwarciem w Polsce nowych perspektyw badawczych. Obserwacje satelitarne w zakresie UV to wciąż nowatorska i przyszłościowa dziedzina badań kosmosu. Unikatowe doświadczenia i bardzo specjalistyczna infrastruktura techniczna, w obu przypadkach zdobyte w trakcie realizacji GLOWS, stanowią doskonałą podstawę do realizacji w Polsce przyszłych misji satelitarnych. Tym bardziej, że obserwacje w zakresie UV proponuje szereg ważnych ośrodków naukowych, również polskich, wyjaśnia doktor habilitowany Piotr Orleański, zastępca dyrektora CBK PAN ds. rozwoju technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA wyznaczyła datę kolejnej próby startu misji Artemis I. Będzie ona miała miejsce 14 listopada, a 69-minutowe okienko startowe otworzy się o godzinie 6:07 czasu polskiego. Dotychczas podjęto dwie próby startu, a po drugiej z nich nie było pewne, czy we wrześniu uda się przeprowadzić trzecią próbę. Mimo, że usterki, które uniemożliwiły obie próby, udało się usunąć, do Florydy zaczął zbliżać się huragan Ian, w związku z czym podjęto decyzję o przetransportowaniu rakiety do hangaru.
      Przeprowadzone po przejściu huraganu inspekcje i analizy wykazały, że przygotowanie rakiety i stanowiska startowego nie wymaga zbyt dużo pracy. Zdecydowano więc o podjęciu drobnych napraw w systemie ochrony termicznej, ponownym załadowaniu lub wymianie akumulatorów, przeprowadzeniu niewielkich zmian w systemie awaryjnego przerwania lotu. Rakieta wyjedzie z hangaru w kierunku stanowiska startowego 4 listopada.
      NASA zarezerwowała sobie dwa rezerwowe okna startowe, na 16 i 19 listopada. Wystrzelenie misji podczas którejś z trzech wymienionych dat – 14, 16 lub 19 listopada – będzie oznaczało, że misja Artemis I potrwa około 26 dni.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...