Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

NASA próbuje rozwiązać zagadkę dziwnych sygnałów nadchodzących z Voyagera 1

Rekomendowane odpowiedzi

Inżynierowie NASA odpowiedzialni za znajdującą się w przestrzeni międzygwiezdnej sondę Voyager 1, próbują rozwiązać zagadkę nietypowych danych, jakie pojazd przysyła. Voyager 1 pracuje normalnie, odbiera i wykonuje komendy z Ziemi, prowadzi badania naukowe, zbiera dane i wysyła je na Ziemię. Jednak odczyty z systemu AACS (attitude articulation and control system) nie oddają tego, co dzieje się na pokładzie sondy.

AACS od 45 lat odpowiada za prawidłową orientację pojazdu. Do jednego z zadań systemu należy dopilnowanie, by antena Voyager 1 była skierowana dokładnie na Ziemię. Wszystko wskazuje na to, że AACS działa, ale coś jest nie tak z danymi telemetrycznymi. Czasami wyglądają tak, jakby były generowane losowo, innym razem nie oddają żadnego stanu, w jakim AACS może się znaleźć.

Co interesujące, problem z AACS nie uruchomił żadnego z zabezpieczeń, odpowiedzialnych za wprowadzenie Voyagera w stan bezpieczny. W stanie tym pojazd przeprowadzałby tylko niezbędne operacje, dając inżynierom czas na zdiagnozowanie usterki. Jednak nic takiego się nie stało. Co więcej, sygnał z sondy nie stracił na mocy, co wskazuje, że jej antena jest skierowana precyzyjnie w stronę naszej planety.

Inżynierowie analizują sygnały, próbując się dowiedzieć, czy niezwykłe dane pochodzą bezpośrednio z AACS czy też z innego układu zaangażowanego w wytwarzanie i przesyłanie danych telemetrycznych. W tej chwili specjaliści nie potrafią powiedzieć, czy obserwowane problemy mogą w większym zakresie wpłynąć na Voyagera i czy skrócą czas jego pracy.

Tajemnice takie jak ta, to na tym etapie część misji Voyager, mówi Suzanne Dodd, odpowiedzialna za Voyagera 1 i Voyagera 2. Oba pojazdy mają niemal 45 lat, pracują znacznie dłużej, niż planowano. Znajdują się też w przestrzeni międzygwiezdnej, w miejscu o wysokim promieniowaniu, w którym nigdy wcześniej nie latał żaden pojazd. Dla zespołu inżynieryjnego to olbrzymie wyzwanie. Myślę jednak, że nasz zespół poradzi sobie z problemem z AACS.

Pani Dodd nie wyklucza, że problemu nie uda się rozwiązać i trzeba będzie się do tego przyzwyczaić. Jeśli jednak uda się znaleźć jego przyczynę, być może trzeba będzie wprowadzić zmiany w oprogramowaniu lub też użyć jednego z systemów zapasowych Voyagera. Jeśli tak się stanie, to nie będzie to pierwszy raz, gdy Voyager 1 używa systemów zapasowych. W 2014 roku główne silniki pojazdu zaczęły wykazywać oznaki degradacji, więc włączono silniki zapasowe, które wcześniej wykorzystywano podczas przelotów w pobliżu planet. Okazało się, że silniki te działają bez zakłóceń, mimo że nie były używane przez 37 lat.

Voyager 1 znajduje się obecnie w odległości 23,3 miliarda kilometrów od Ziemi. Światło pokonuje tę drogę w ciągu 20 godzin i 33 minut. By uświadomić sobie, jak olbrzymia to odległość wystarczy pamiętać, że światło ze Słońca na Ziemię biegnie 8 minut.

Voyager 2 działa normalnie. Znajduje się w odległości 19,5 miliarda kilometrów od Ziemi.

Oba Voyagery zostały wystrzelone w 1977 roku. Pracują znacznie dłużej niż planowano. Są jedynymi pojazdami wysłanymi przez człowieka, które dotarły do przestrzeni międzygwiezdnej. Dostarczyły nam bezcennych informacji na temat heliosfery, bariery za pomocą której Słońce chroni Układ Słoneczny. Wcale nie było pewne, czy tam dotrą. Przed 12 laty opisywaliśmy obawy związane z dotarciem Voyagera 1 do heliopauzy i spotkaniem z łukiem uderzeniowym.

Każdego roku możliwość produkcji energii pojazdów zmniejsza się o około 4 waty. Dlatego też przez lata stopniowo wyłączano poszczególne podzespoły, by zapewnić energię dla najważniejszych instrumentów naukowych i niezbędnych systemów. Dzięki przemyślanym działaniom nie wyłączono dotychczas żadnego urządzenia naukowego. Inżynierowie z NASA chcą, by Voyagery pracowały jeszcze w roku 2026.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
26 minut temu, mcezar napisał:

No jak to, po prostu zawraca. Tak jak Voyager 2 tutaj

Ale 1 kwietnia już był jakiś czas temu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie z NASA naprawili sondę Voyager 1. Jak informowaliśmy w maju, sonda, znajdująca się w odległości ponad 23 miliardów kilometrów od Ziemi, zaczęła przysyłać nieprawidłowe dane. Były one wysyłane z systemu AACS, do którego od 45 lat należy kontrola nad prawidłową orientacją pojazdu. Jednym z jego zadań jest dopilnowanie, by antena Voyagera była skierowana dokładnie na Ziemię. Wszystko działało prawidłowo, jednak odczyty z AACS nie oddawały tego, co rzeczywiście dzieje się z sondą.
      Sygnał z Voyagera 1 nie tracił mocy, co wskazywało, że antena jest precyzyjnie ustawiona w stronę Ziemi. Dane przysyłane z AACS czasem wyglądały na generowane losowo, innymi razy nie oddawały żadnego stanu, w jakim urządzenie mogło się znaleźć. Jakby tego było mało, błąd w AACS nie uruchomił żadnego z zabezpieczeń Voyagera. Po miesiącach pracy inżynierowie w końcu znaleźli źródło problemu. Okazało się, że AACS zaczął przesyłać dane za pośrednictwem komputera, który przestał pracować wiele lat temu. I to ten komputer uszkadzał dane.
      NASA nie zna natomiast samej przyczyny błędy. Nie wiadomo, dlaczego AACS zaczął przesyłać dane tą drogą. Susanne Dodd, odpowiedzialna za Voyagera, podejrzewa, że stało się tak w momencie, gdy centrum kontroli nakazało Voyagerowi przesyłanie danych przez jeden z dobrze działających komputerów. Niewykluczone, że komenda ta została zniekształcona przez komputer, który przekierował dane z AACS do wadliwej maszyny. Jeśli tak, to oznacza, że któryś ze znajdujących się na pokładzie Voyagera elementów wygenerował błąd. A inżynierowie nie wiedzą jeszcze, który to element. Specjaliści nie ustają w poszukiwaniu źródła problemów, jednak w tej chwili wygląda na to, że misja Voyagera nie jest zagrożona.
      Jesteśmy szczęśliwi, że telemetria wróciła. Dokonamy teraz pełnego przeglądu układów pamięci AACS i przeanalizujemy wszystko, co system ten robił. To powinno tam pomóc w odnalezieniu przyczyny problemu. Jesteśmy optymistami, chociaż przed nami jeszcze dużo pracy, dodaje Dodd.
      Voyager 1 i Voyager 2 pracują już przez 45 lat. To znacznie dłużej niż pierwotnie planowano. Oba pojazdy znajdują się już w przestrzeni międzygwiezdnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W 2018 roku amerykańscy astronomowie pracujący przy radioteleskopie EDGES w Australii poinformowali o odkryciu sygnału radiowego o szczególnej częstotliwości. Był on znacząco słabszy od innych sygnałów. Wyniki swoich badań opublikowali na łamach Nature, gdzie ogłosili, że znaleziony sygnał pochodzi z narodzin pierwszych gwiazd po Wielkim Wybuchu. Co więcej, dane były inne, niż przewidziane przez teoretyków. Wskazywały one, że wczesny wszechświat był zadziwiająco chłodny. Teoretycy siedli do pracy, by to wyjaśnić, a inne zespoły ruszyły do teleskopów, by potwierdzić istnienie sygnału.
      Wśród tych, którzy postanowili zarejestrować sygnał zauważony przez Amerykanów byli naukowcy z Raman Research Institute w Bangalore w Indiach. Wykorzystali oni radioteleskop SARAS-3. Niewielkie urządzenie pływa na dwóch jeziorach w odległych regionach Indii. Indyjscy naukowcy zebrali dane i przez ostatnie dwa lata szczegółowo je analizowali. Właśnie poinformowali na łamach Nature Astronomy, że w danych nie znaleziono żadnego śladu sygnału, o którym pisali Amerykanie.
      Jeśli tam by coś było, to by to zauważyli, mówi radioastronom Aaron Parsons z Uniwersytetu Kalifornijskiego w Berkeley. Nie ma tutaj zbytnio miejsca na wątpliwości, dodaje uczony, który nie był zaangażowany w żadne z opisywanych badań.
      Judd Bowman, który stoi na czele zespołu badawczego teleskopu EDGES i kierował badaniami sprzed 4 lat dodaje, że konieczne są dalsze prace, by rozstrzygnąć, kto ma rację. Biorąc pod uwagę, jak trudne są tego typu obserwacja, czeka nas sporo pracy. Musimy włączyć te badania w te wciąż prowadzone.
      Zarówno EDGES jak i SARAS usiłowały wykryć emisję pochodzącą z wodoru. Pierwiastek ten w sposób naturalny absorbuje i emituje fale radiowe o długości 21 centymetrów. Na trasie swojej podróży w kierunku Ziemi fale te coraz bardziej się rozciągają. Fale z bardziej odległych chmur wodoru są rozciągnięte bardziej, niż te z chmur bliższych. A topień ich rozciągnięcia świadczy o tym, z jakie odległości – czyli i z jakiego czasu – pochodzą.
      Astronomowie już od ponad 50 lat wykorzystują emisję wodoru do badania pobliskich galaktyk. Jednak dzięki postępowi technologicznemu takie instrumenty jak EDGES i SARAS mogą rejestrować też fale pochodzące z większych odległości, bardziej rozciągnięte, które trudniej jest badać, gdyż zakłócają je naturalne i sztuczne sygnały z Ziemi.
      Gdy atomy wodoru dopiero powstawały po Wielkim Wybuchu, absorbowały i emitowały tyle samo promieniowania o długości fali 21 centymetrów. Przez to chmury wypełniającego wszechświat wodoru były niewidoczne.
      Później zaś nastąpił kosmiczny świt. Promieniowanie ultrafioletowe z pierwszych gwiaz wzbudziło atomy wodoru, przez co mogły one absorbować więcej promieniowania niż pochłaniały. Zjawisko to, obserwowane obecnie z Ziemi, powinno objawiać się nagłym spadkiem jasności fal o określonej długości. Ten spadek wyznacza moment powstania pierwszych gwiazd. Z czasem te pierwsze gwiazdy zapadły się w czarne dziury. Gorący gaz z dysków wokół czarnych dziur emitował promieniowanie rentgenowskie. Podgrzało ono wodór, zwiększając jego emisję w paśmie 21 centymetrów. To zaś objawia się zwiększeniem jasności fal o minimalnie mniejszej długości niż wcześniejsze fale. Wynik netto tych zmian, to spadek jasności w wąskim zakresie fal. Taki właśnie spadek spodziewali się wykryć naukowcy pracujący przy EDGES.
      Znaleźli jednak coś innego. Spadek dotyczyły fal o długości 4 metrów. Analiza takich danych wskazywała, że pierwsze gwiazdy powstały zadziwiająco szybko i szybko doszło do pojawienia się promieniowania X. Co więcej, dane pokazywały też, że wodór we wczesnym wszechświecie był chłodniejszy niż przewidywały teorie.
      Pojawiły się różne próby wyjaśnienia tego zjawiska. Wiadomo też było, że zakłócenia do sygnału może wprowadzać sam radioteleskop i jego konstrukcja. Edges otoczony jest przez duży, 30-metrowy metalowy ekran, który ma blokować emisję radiową pochodzącą z gruntu. Amerykański zespół uwzględnił w swojej pracy możliwość pojawienia się zakłóceń pochodzących z krawędzi tego ekranu. Jednak specjaliści zwracają uwagę, że wystarczy niewielki błąd w korekcie, by w analizie pojawiły się dane nie do odróżnienia od danych rzeczywistych.
      Naukowcy z Bangalore zaprojektowali swój radioteleskop tak, by był on bardziej odporny na zakłócenia. Dodatkowo umieścili go na jeziorze, dzięki czemu zyskali pewność, że w promieniu 100 metrów od teleskopu nie pojawią się żadne odbicia horyzontalne. Sama zaś woda jeziora powodowała, że odbite od dna sygnały biegły wolniej, a dzięki jednorodnej gęstości wody łatwiej modelować całe otoczenie teleskopu i wyławiać z danych fałszywe sygnały.
      Dzięki temu naukowcom pracującym przy SARAS udało się dokładnie przeanalizować całe spektrum wokół fal o długości 4 metrów i stwierdzić, że nie widać w nim żadnego spadku jasności zarejestrowanego przez EDGES.
      Cynthia Chiang, radioastronom z kanadyjskiego McGill University stwierdziła, że oba zespoły naukowe – amerykański i indyjski – bardzo dobrze i ostrożnie przeprowadziły wszelkie prace nad kalibracją urządzeń i analizą danych, dlatego też jest obecnie zbyt wcześnie, by orzekać, który z nich ma rację.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dziwny powtarzający się sygnał radiowy dobiegający z okolic centrum Drogi Mlecznej nie przypomina żadnego innego znanego sygnału. Ma zupełnie inną sygnaturę. Jak wynika z wyników badań zaakceptowanych do publikacji w The Astrophysical Journal i udostępnionych na arXiv [PDF], źródło sygnału przez wiele tygodni jest bardzo jasne w paśmie radiowym, a następnie zanika w ciągu jednego dnia
      Takie zachowanie się sygnału radiowego nie pasuje do żadnego znanego obiektu niebieskiego. Dlatego też naukowcy z Australii, USA, Niemiec, Kanady, Hiszpanii, Francji i RPA, którzy badali to zjawisko za pomocą Australian SKA Pathfinder, przypuszczają, że mogli odkryć nową klasę obiektów kosmicznych.
      Tajemniczy sygnał ASKAP J173608.2−321635 jest wysoce spolaryzowany i wysoce zmienny. Na potrzeby badań obserwowano go pomiędzy kwietniem 2019 a sierpniem 2020 roku. W tym czasie pojawił się 13 razy. Nigdy nie trwał dłużej niż kilka tygodni. Źródło jest bardzo zmienne, pojawia się i znika nagle, bez żadnego wzorca, który udałoby się odczytać.
      Badacze próbowali dopasować ten sygnał do danych z wielu innych teleskopów, w tym do Chandra X-ray Observatory, Neil Gehrels Swift Observatory czy Visible and Infrared Survey Telescope for Astronomy. W żadnym nie znaleziono niczego, co przypominałoby ASKAP J173608.2−321635. Wygląda więc na to, że źródło nie emituje niczego w innych częstotliwościach spektrum elektromagnetycznego. Naukowcy nie potrafią wyjaśnić takiego zjawiska.
      Autorzy badań piszą, że co prawda gwiazdy o małej masie mogą okresowo generować rozbłyski w paśmie radiowym, jednak zwykle towarzyszy im emisja w paśmie promieniowania rentgenowskiego. Nic nie wskazuje też na to, by źródłem mogły być pulsary lub magnetary. Pulsary emitują silne sygnały radiowe, ale jest to emisja o przewidywalnym okresie i nie trwa całymi tygodniami. Z kolei magnetary charakteryzuje też silna emisja w zakresie rentgenowskim.
      Z wszystkich znanych źródeł emisji sygnał ASKAP J173608.2−321635 najbardziej przypomina tajemnicze GCRT (Galactic Center Radio Transient). Dotychczas znamy trzy tego typu obiekty. Również i one znajdują się w kierunku centrum naszej galaktyki, wszystkie nagle rozpoczynają emisję w paśmie radiowym i równie gwałtownie ją kończą. Mają też podobną jasność i nigdy nie towarzyszy im promieniowanie rentgenowskie. Jednak pojawiają się i znikają szybciej niż ASKAP J173608.2−321635.  Niewykluczone zatem, że źródło ASKAP J173608.2−321635 jest w jakiś sposób powiązana z GCRT, a być może również jest takim obiektem.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Breakthrough Listen Project, który bazuje ne Berkeley SETI Research Center, a jego celem jest poszukiwanie sygnałów radiowych wysłanych przez obcą cywilizację, poinformowali o zarejestrowaniu nietypowej transmisji nadchodzącej z kierunku Proxima Centauri, gwiazdy najbliższej Słońcu. Wiemy, że gwieździe tej towarzyszą co najmniej dwie planety.
      Sygnał został zarejestrowany przez 64-metrowy radioteleskop z obserwatorium Parkes w Nowej Południowej Walii. To drugi – po DSS-43 – największy na półkuli południowej radioteleskop z ruchomą czaszą.
      Specjaliści zwracają uwagę, że sygnał „dryfuje”. Jego częstotliwość wydaje się nieco zmieniać, raz jest wyższa, raz niższa, co ma związek albo z ruchem orbitalnym Ziemi, albo źródła sygnału. Na tej podstawie wnioskują, że nie pochodzi on z anteny umieszczonej na Ziemi. Zatem sygnał jest pozaziemski. Co nie oznacza, że pochodzi od obcej cywilizacji.
      Jeśli rejestrujemy taki sygnał i wiemy, że nie pochodzi on z powierzchni Ziemi, wiemy, że to sygnał pozaziemski. Niestety, ludzie wystrzelili w przestrzeń kosmiczną wiele źródeł pozaziemskich sygnałów, stwierdza Jason Wright z Penn State University. Może to być bowiem transmisja danych telemetrycznych z satelity. Ruch satelitów wokół Ziemi powoduje, że dochodzi do zmian częstotliwości ich sygnału. Faktem jest, że prawdopodobieństwo, iż teleskop przypadkowo odbiera transmisję z satelity jest niewielkie, ale nie można go wykluczyć. W końcu nad naszymi głowami krąży około 2700 działających satelitów.
      Kolejna możliwość jest taka, że sygnał pochodzi z obiektu znajdującego się poza Proximą Centauri. Obiekt ten musiałby znajdować się w prostej linii za gwiazdą z punktu widzenia Ziemi. Jeśli rzeczywiście tak jest i źródłem sygnału jest naturalny obiekt, którego nie widzimy, to byłoby to również interesujące odkrycie. Wiemy, że sygnały radiowe są emitowane np. przez kwazary czy pulsary, ale emisja ze źródeł naturalnych obejmuje znaczną część spektrum. I to właśnie fakt, że emisja jest w tak wąskim zakresie, jest najbardziej interesujący. Nie znamy żadnego naturalnego źródła takiego sygnału, mówi Andrew Siemion z Uniwersytetu Kalifornijskiego w Berkeley. Być może istnieją nieznane nam zjawiska związane z fizyką plazmy, które powodują powstawanie takiego sygnału, ale obecnie, jedyne źródła, jakie znamy, to źródła techniczne, dodaje Siemion.
      Nie można też wykluczyć, że zarejestrowany sygnał pochodzi z naturalnego źródło o silnym polu magnetycznym. W Układzie Słonecznym źródłem takich sygnałów radiowych jest Jowisz. Być może wokół Proxima Centauri krąży duża planeta o silnym polu magnetycznym. To możliwe, jednak trzeba zwrócić uwagę, że gdyby taka podobna do Jowisza planeta tam istniała, to emitowane przez nią sygnały byłyby około 1000-krotnie zbyt słabe, żeby mogły je zarejestrować ziemskie radioteleskopy. Musielibyśmy przyjąć, że naturalne sygnały radiowe emitowane przez tę hipotetyczną planetę są znacznie silniejsze niż emisja radiowa z Jowisza. Jest to mało prawdopodobne, ale nie niemożliwe.
      Zawsze też istnieje możliwość, że sygnał pochodzi z... bezpośredniego sąsiedztwa radioteleskopu. Dość przypomnieć, że przed pięciu laty naukowcy z obserwatorium Parkes zarejestrowali sygnały świadczące o tym, że głęboko w kosmosie dzieje się coś niezwykłego. Analiza danych wykazała, że radioteleskop złapał sygnał z... kuchenki mikrofalowej w obserwatorium.
      Historia naszego sygnału rozpoczęła się w kwietniu ubiegłego roku, kiedy to naukowcy pracujący przy Breakthrough Liten obserwowali Proxima Centauri. Chcieli zarejestrować pochodzące z gwiazdy rozbłyski, by badać, jak wpływają one na krążące planety. W październiku jeden z naukowców analizujących uzyskane dany trafił na nietypowy sygnał o częstotliwości 982,002 MHz. Szybko okazało się, że to najbardziej ekscytujący sygnał, jaki znaleziono w ramach projektu Breakthroug Listen. Zyskał on miano BLC1 od Breakthroug Listen Candidate 1.
      Na początku przyszłego roku ma ukazać się pierwsza praca naukowa dotycząca BLC1. Przed specjalistami prawdopodobnie jeszcze wiele miesięcy analiz, zanim jednoznacznie stwierdzą, co jest źródłem tajemniczego sygnału.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...