Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak zasilać bazę na Marsie? Na połowie powierzchni planety fotowoltaika lepsza od energii jądrowej

Recommended Posts

Ostatnie postępy w technologii fotowoltaicznej, pojawienie się wydajnych i lekkich ogniw słonecznych i duża elastyczność tej technologii powoduje, że fotowoltaika może dostarczyć całość energii potrzebnej do przeprowadzenia długotrwałej misji na Marsie, a nawet do zasilenia stałej osady – twierdzą naukowcy z University of California, Berkeley.

Dotychczas większość specjalistów mówiących o logistyce misji na Czerwonej Planecie zakładała wykorzystanie technologii jądrowej. Jest ona stabilna, dobrze opanowana i zapewnia energię przez 24 godziny na dobę. To rozwiązanie na tyle obiecujące, że NASA od kilku lat prowadzi projekt Kilopower, którego celem jest stworzenie na potrzeby misji kosmicznych reaktora jądrowego o mocy do 10 kilowatów.

Problem z energią słoneczną polega zaś na tym, że w nocy Słońce nie świeci. Ponadto na Marsie wszechobecny pył zmniejsza efektywność paneli słonecznych. Przekonaliśmy się o tym w 2019 roku, gdy po 15 latach spędzonych na Marsie zasilany panelami słonecznymi łazik Opportunity przestał działać po wielkiej burzy pyłowej.

W najnowszym numerze Frontiers in Astronomy and Space Sciences ukazał się artykuł opisujący wyniki analizy, w ramach których porównano możliwości wykorzystania na Marsie energii ze Słońca z energią jądrową. Naukowcy z Berkeley analizowali scenariusz, w którym marsjańska misja załogowa trwa 480 dni. To bowiem bardzo prawdopodobny scenariusz misji na Marsa uwzględniający położenie planet względem siebie.

Analiza wykazała, że na ponad połowie powierzchni Marsa panują takie warunki, iż – uwzględniając rozmiary i wagę paneli słonecznych – technologia fotowoltaiczna sprawdzi się równie dobrze lub lepiej niż reaktor atomowy. Warunkiem jest przeznaczenie części energii generowanej za dnia do produkcji wodoru, który zasilałby w nocy ogniwa paliwowe marsjańskiej bazy.

Na ponad 50% powierzchni Marsa technologia fotowoltaiczna połączona z produkcją wodoru sprawdzi się lepiej niż generowanie energii z rozpadu jądrowego. Przewaga ta jest widoczna przede wszystkim w szerokim pasie wokół równika. Wyniki naszej analizy stoją w ostrym kontraście do ciągle proponowanej w literaturze fachowej energii jądrowej, mówi jeden z dwóch głównych autorów badań, doktorant Aaron Berliner.

Autorzy analizy wzięli pod uwagę dostępne technologie oraz sposoby ich wykorzystania. Pokazują, najlepsze scenariusze ich użycia, rozważają ich wady i zalety.

W przeszłości NASA zakładała krótkotrwałe pobyty na Marsie. Takie misje nie wymagałyby np. upraw żywności czy tworzenia na Marsie materiałów konstrukcyjnych lub pozyskiwania środków chemicznych. Jednak obecnie coraz częściej rozważne są długotrwałe misje, a w ich ramach prowadzenie działań wymagających dużych ilości energii byłoby już koniecznością. Trzeba by więc zabrać z Ziemi na Marsa komponenty do budowy źródeł zasilania. Tymczasem każdy dodatkowym kilogram obciążający rakietę nośną to olbrzymi wydatek. Dlatego też konieczne jest stworzenie lekkich urządzeń zdolnych do wytwarzania na Marsie energii.

Jednym z kluczowych elementów marsjańskiej stacji, którą takie źródła miałyby zasilać, będą laboratoria, w których genetycznie zmodyfikowane mikroorganizmy wytwarzałyby żywność, paliwo, tworzywa sztuczne i związki chemiczne, w tym leki. Berliner i inni autorzy analizy są członkami Center for the Utilization of Biological Engineering in Space (CUBES), które pracuje nad tego typu rozwiązaniami. Naukowcy zauważyli jednak, że cały ich wysiłek może pójść na marne, jeśli na Marsie nie będzie odpowiednich źródeł zasilania dla laboratoriów.

Dlatego też przeprowadzili analizę porównawczą systemu Kilopower z instalacjami fotowoltaicznymi wyposażonymi w trzy różne technologie przechowywania energii w akumulatorach i dwie technologie produkcji wodoru – metodą elektrolizy i bezpośrednio przez ogniwa fotoelektryczne. Okazało się, że jedynie połączenie fotowoltaiki z elektrolizą jest konkurencyjne wobec energetyki jądrowej. Na połowie powierzchni Marsa było to rozwiązanie bardziej efektywne pod względem kosztów niż wykorzystanie rozpadu atomowego.

Głównym przyjętym kryterium była waga urządzeń. Naukowcy założyli, że rakieta, która zabierze ludzi na Marsa, będzie zdolna do przewiezienia ładunku o masie 100 ton, wyłączając z tego masę paliwa. Obliczyli, jaką masę należy zabrać z Ziemi, by zapewnić energię na 420-dniową misję. Ku swojemu zdumieniu stwierdzili, że masa systemu produkcji energii nie przekroczyłaby 10% całości masy ładunku.

Z obliczeń wynika, że dla misji, która miałby lądować w pobliżu równika, łączna masa instalacji fotowoltaicznej oraz systemu przechowywania energii w postaci wodoru wyniosłaby około 8,3 tony. Masa reaktora Kilopower to z kolei 9,5 tony. Ich model uwzględnia nasłonecznienie, obecność pyłu i lodu w atmosferze, które wpływają na rozpraszanie światła słonecznego. Pokazuje też, jak w różnych warunkach optymalizować użycie paneli fotowoltaicznych.

Uczeni zauważają, że mimo iż najbardziej wydajne panele słoneczne są wciąż drogie, to jednak główną rolę odgrywają koszty dostarczenia systemu zasilania na Marsa. Niewielka masa fotowoltaiki i elastyczność jej użycia to olbrzymie zalety tej technologii. Krzemowe panele na szklanym podłożu zamknięte w stalowych ramach, jakie są powszechnie montowana na dachach domów, nie mogą konkurować z najnowszymi udoskonalonymi reaktorami. Ale nowe, lekkie elastyczne panele całkowicie zmieniają reguły gry, stwierdzają autorzy analizy.

Zwracają przy tym uwagę, że dzięki niższej masie można zabrać więcej paneli, więc będzie możliwość wymiany tych, które się zepsują. System Kilopower dostarcza więcej energii, zatem mniej takich reaktorów trzeba by dostarczyć, ale awaria jednego z urządzeń natychmiast pozbawiłaby kolonię znacznej części energii.


« powrót do artykułu

Share this post


Link to post
Share on other sites
W dniu 8.05.2022 o 10:58, KopalniaWiedzy.pl napisał:

Ale nowe, lekkie elastyczne panele całkowicie zmieniają reguły gry, stwierdzają autorzy analizy.

Czyli zakładają zabranie "naszych", perowskitowych? :)

Share this post


Link to post
Share on other sites
Posted (edited)

Opowieści z Narni. Specjalnie wzięli te 480 dni. Żywotność paneli na marsie i związane z tym osłabienie parametrów wydajności w raz z t nie pozwala na dłuższy okres.
Przecież nikt tam nie będzie zakładał bazy na 1,5 roku, tylko na dziesięciolecia.

Reaktor pociągnie z 50 lat i nie trzeba nic już z ziemi dostarczać, poza paliwem, które w tym wypadku praktycznie nic nie waży.      

Kto te głupoty łyka? No raczej nie NASA.
Idioci rozwiązują wirtualny problem. Nikomu do niczego niepotrzebna opowiastka z mchu i paproci. Źle zdefiniowali wymagania i cieszą się, że znaleźli rozwiązanie. 

Podobne podejście co w komputerach kwantowych: wymyślmy jakiś algorytm, dla którego nasze optyczne cacko poda wynik. Nie istotne, że nikomu się ten wynik  nie przyda, ważne, że się policzył.   

Edited by l_smolinski

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Za kilkanaście miesięcy, 24 września 2023 roku sonda OSIRIS-REx dostarczy na Ziemię próbki asteroidy Bennu. Jednak na tym nie koniec. NASA przydzieliła jej bowiem nowe zadanie. Po dostarczeniu próbek rozpocznie się OSIRIS-APEX, misja w ramach której sonda poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Misja OSIRIR-REx wystartowała w 2016 roku, a cztery lata później sonda dotknęła asteroidy Bennu i pobrała z niego próbki. Padła przy tym ofiarą własnego sukcesu, gdyż materiału było zbyt dużo i nie można było zamknąć pojemnika oraz zważyć próbek. Niemal równo rok temu sonda rozpoczęła powrót w kierunku Ziemi. W przyszłym roku, 24 września, gdy OSIRIS-REx podleci wystarczająco blisko Ziemi, od pojazdu odłączy się pojemnik z próbkami, który na spadochronie wyląduje na Ziemi. Pojemnik zostanie otwarty w specjalnym laboratorium w Johnson Space Center. Część zebranych próbek zostanie udostępniona innym krajom, część zaś zostanie zapieczętowana na wiele dekad, by w przyszłości mogli je zbadać naukowcy dysponujący lepszym sprzętem.
      NASA właśnie przydzieliła pojazdowi nowe zadanie. Trzydzieści dni po tym, jak próbki trafią na Ziemię, pojazd wykona pierwszy z manewrów, który skieruje go w stronę asteroidy Apophis. Będzie wówczas pracował w ramach misji OSIRIS-APEX, od OSIRIS-Apophis Explorer.
      Za stronę naukową misji OSIRIS-REx odpowiada profesor Dante Lauretta. Natomiast głównym naukowcem OSIRIS-APEX będzie obecny zastępca Lauretty, profesor Dani DellaGiustina. Na misję OSIRIS-APEX przeznaczono 200 milionów dolarów.
      Gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. Po intensywnym poszukiwaniu potencjalnego celu badawczego zdecydowano, że sonda poleci na spotkanie z Apophisem.
      Apophis to jedna z asteroid o najgorszej opinii. Gdy została odkryta w 2004 roku istniały obawy, że w 2029 roku może uderzyć w Ziemię. Jednak po intensywnych obserwacjach wykluczono takie ryzyko. Mimo to Apophis będzie najbliższą Ziemi tak dużą asteroidą od czasu około 50 lat, zatem od czasu, gdy szczegółowo śledzimy asteroidy. I przez kolejnych 100 lat żadna ze znanych nam dużych asteroid nie podleci tak blisko naszej planety. W 2029 roku Apophis znajdzie się 10-krotnie bliżej Ziemi niż Księżyc. Ludzie w Europie i Afryce powinni widzieć asteroidę gołym okiem, mówi DellaGiustina.
      Misia OSIRIS-APEX będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Marsjański śmigłowiec Ingenuity odnalazł spadochron, za pomocą którego łazik Perseverance wylądował na Marsie, oraz fragmenty osłony termicznej i inne elementy, które chroniły łazik podczas podróży w kierunku Czerwonej Planety, jak i w czasie wejścia w jej atmosferę.
      NASA wydłużyła czas misji Ingenuity po to, by przeprowadzić pionierskie loty, takie jak ten. Za każdym razem, gdy wznosi się w powietrze, Ingenuity sprawdza nowe fragmenty planety, oferując nam możliwości, jakich nie miała żadna z dotychczasowych misji planetarnych. Jest on idealnym przykładem możliwości i użyteczności platform lotniczych na Marsie, cieszy się Teddy Tzanetos z Jet Propulsion Laboratory, który stoi na czele zespołu odpowiedzialnego na Ingenuity.
      Pojazd z łazikiem na pokładzie wszedł w atmosferę Marsa z prędkością niemal 20 000 km/h. Całość musiała wytrzymać wysokie temperatury, silne drgania i inne ekstremalne zjawiska. Dotychczas pozostałości systemu lądowania mogliśmy oglądać tylko na zdjęciach zrobionych z oddali przez Perseverance. Teraz na Ziemię trafiły świetne ujęcia zrobione z góry, z niewielkiej wysokości.
      Inżynierowie z NASA zrobią użytek z przysłanych przez śmigłowiec fotografii. Uzyskane dzięki nim informacje posłużą do udoskonalenia urządzeń lądujących.
      Misja Perseverance ma najlepiej w historii udokumentowane lądowanie na Marsie. Kamery pokazały nam wszystko, do rozwinięcia spadochronów po pierwszy kontakt z powierzchnią planety. Jednak zdjęcia Ingenuity dostarczają zupełnie nowych informacji. Niezależnie od tego, czy ich analiza wykaże, że wszystkie elementy działały tak, jak przewidywaliśmy czy też stwierdzimy, że coś trzeba poprawić, będzie to nieocenioną pomocą dla planowania misji Mars Sample Return, dodaje Ian Clark, były inżynier systemów Perseverance, który jest obecnie odpowiedzialny za opracowanie fazy startu z powierzchni Marsa misji Mars Sample Return. To misja, w ramach której próbki Marsa zebrane przez Perseverance mają przylecieć na Ziemię.
      Na zrobionych przez Ingenuity zdjęciach widzimy osłonę oraz jej fragmenty, na które rozpadła się uderzając w Marsa z prędkością około 126 km/h. Wydaje się, że jej pokrycie nie zostało uszkodzone podczas wchodzenia w atmosferę planety. Widocznych jest też wiele z 80 lin łączących osłonę ze spadochronami. Widać też około 1/3 samego spadochronu. Reszta jest zapewne przykryta pyłem marsjańskim. Na pierwszy rzut oka można stwierdzić, że spadochron nie uległ uszkodzeniu w czasie rozwijania przy prędkościach ponaddźwiękowych.
      Inżynierów z NASA czeka teraz kilkanaście tygodni analiz zdjęć.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Układ Słoneczny jest pełen fascynujących obiektów, które mogą być celem misji naukowych. Jednak budżet NASA – mimo że imponujący – nie jest z gumy, więc Agencja musi starannie określać priorytety swoich działań. Pomaga jej w tym tzw. przegląd dekady (decadal survey), nadzorowany przez Narodowe Akademie Nauk, Inżynierii i Medycyny. W jego ramach, raz na 10 lat, NASA prosi społeczność naukową o ocenę aktualnego stanu wiedzy i określenie obszarów, których zbadanie powinno być priorytetem.
      Właśnie ukazał się raport z najnowszego przeglądu dekady. Określa on przyszłe kierunki rozwoju astrobiologii, planetologii i obrony planetarnej. To rekomendowane portfolio misji, priorytetowych badań naukowych oraz technologii, które należy rozwijać. Realizacja tych zaleceń powiększy naszą wiedzę o powstaniu i ewolucji Układu Słonecznego oraz możliwości występowania życia i warunków do jego podtrzymania na innych obiektach niż Ziemia, mówi Robin Canup z Southwest Research Institute, który jest współprzewodniczącym komitetu organizującego przegląd.
      Jednym z zadań przeglądu jest określenie największych misji NASA, misji flagowych. Obecnie agencja prowadzi dwie takie misje, które zostały zaproponowane w poprzednim decadal survey. To warta 2,7 miliarda USD misja łazika Perseverance, który w ubiegłym roku wylądował na Marsie oraz misja Europa Clipper, która ma wystartować w roku 2024, a której budżet wynosi 4,25 miliarda dolarów. To misja orbitera, który będzie krążył wokół Jowisza i zbada też jego księżyc – Europę.
      W ramach najnowszego przeglądu dokonano analizy sześciu potencjalnych misji flagowych. Wśród propozycji znalazło się zarówno lądowanie na Merkurym, jak i przygotowanie misji badawczej do Neptuna i jego największego księżyca, Trytona. Komitet dokonujący oceny propozycji uznał, ze priorytetową powinna być misja do Urana, które koszt oszacowano na 4 miliardy dolarów.
      Specjaliści uznali, że misja, w ramach której do Urana miałby polecieć zarówno orbiter jak i próbnik, ma największy potencjał naukowy oraz największe szanse na powodzenie. Misja taka miałaby wystartować w roku 2031 lub 2032, a do Urana dotarłaby 13 lat później. Następnie przez kilkanaście lat pojazd pozostałby na orbicie Urana, badając jego atmosferę, pierścienie, wnętrze i księżyce. Uran to jeden z najbardziej interesujących obiektów Układu Słonecznego, napisali członkowie komitetu. Zaznaczyli, że zrealizowanie misji do któregoś z lodowych olbrzymów – Urana lub Neptuna – jest absolutnym priorytetem, ale przygotowanie w ciągu najbliższej dekady misji do Neptuna byłoby zbyt dużym wyzwaniem.
      Jeśli zaś NASA otrzyma odpowiednie finansowanie, mogłaby zorganizować kolejną misję flagową. Komitet zarekomendował misję Enceladus Orbilander. Zakłada ona zbudowanie pojazdu, który udałby się do księżyca Saturna, Enceladusa. Przez 1,5 roku badałby go z orbity, a następnie by wylądował i przez kolejne 2 lat prowadził badania na jego powierzchni. Koszt takiej misji oszacowano na 5 miliardów dolarów.
      Poza misjami flagowymi, pojawiły się też inne propozycje. Jako, że od czasu ostatniego przeglądu dekady liczba odkrytych egzoplanet zwiększyła się kilkukrotnie, specjaliści zaproponowali trzy szerokie pola badawcze w dziedzinie planetologii. Eksperci chcą, by NASA zajęła się 1. pochodzeniem układów planetarnych podobnych do naszego oraz zbadaniem, na ile są one rozpowszechnione we wszechświecie, 2. ewolucją planet oraz 3. warunkami koniecznymi do powstania planet zdolnych do podtrzymania życia i jego pojawienia się na Ziemi oraz jego poszukiwania poza Ziemią. Próby odpowiedzi na te pytania mogą zaś być związane ze zorganizowaniem mniejszych misji niż te flagowe. Może być to np. zbudowanie sieci czujników geofizycznych na Księżycu, pobranie i przywiezienie na Ziemię próbek z komety lub planety karłowatej Ceres czy wysłanie pojazdów badawczych w kierunku Saturna czy jego księżyców.
      Twórcy przeglądu dużą uwagę przywiązali też do coraz bardziej rozszerzającego się pola badawczego związanego z obroną Ziemi przed zagrożeniami z przestrzeni kosmicznej. Już w tej chwili NASA kataloguje i śledzi olbrzymią liczbę obiektów bliskich Ziemi (NEO – Near-Earth Objects), a w ubiegłym roku wystartowała pierwsza misja, której celem jest przetestowanie technologii obrony Ziemi przed asteroidami (DART). Uruchomiono też nowoczesne narzędzie do oceny ryzyka uderzeń asteroid w Ziemię i trwają prace nad pojazdem NEO Surveyor, który będzie identyfikował obiekty mogące zagrozić naszej planecie.
      W decadal survey wezwano NASA, by w 2029 roku, kiedy w pobliże Ziemi przyleci duża asteroida Apophis, Agencja przeprowadziła badania pod kątem obrony planetarnej. Autorzy przeglądu uważają również, że po misjach DART i NEO priorytetem NASA powinno być opracowanie pojazdu, który mógłby w trybie pilnym udać się do zagrażającej Ziemi asteroidy, by lepiej ocenić stwarzane przez nią ryzyko.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krążący na orbicie Marsa pojazd ExoMars Trace Gas Orbiter odkrył ślady dużych ilości wody w centrum jednego z największych kanionów Układu Słonecznego, Valles Marineris. O ile samo odkrycie wody na Marsie nie jest zaskoczeniem – wiemy, że znajduje się ona w pobliżu biegunów – to jej istnienie tak blisko równika zaskoczyło naukowców. Jeśli odkrycie się potwierdzi, może znakomicie ułatwić załogową eksplorację Czerwonej Planety.
      Obecność wody została zarejestrowana przez instrument FREND, który bada zawartość wodoru w górnym metrze marsjańskiego gruntu. Naukowcy nie spodziewali się wody tak blisko powierzchni Marsa w okolicach równika, gdyż panują tam zbyt wysokie temperatury, by lód mógł pozostać stabilny. Dzięki Trace Gas Orbiter możemy zajrzeć metr pod powierzchnię planety i zobaczyć, co dzieje się pod nią. Przede wszystkim zaś możemy zidentyfikować bogate w wodę oazy, których wcześniej stosowane instrumenty nie były wstanie zarejestrować, mówi główny autor badań, Igor Mitrofanow z Instytutu Badań Kosmicznych Rosyjskiej Akademii Nauk. Misja ExoMars TGO to wspólne przedsięwzięcie Roskosmosu i Europejskiej Agencji Kosmicznej (ESA).
      W olbrzymim kanionie Valles Marineris FRED wykrył obszar o niezwykle wysokim poziomie wodoru. Zakładając, że obserwowany wodór stanowi część molekuł wody, widzimy, że woda znajduje się pod 40% powierzchni kanionu, dodaje rosyjski uczony. Valles Marineris ma ponad 4000 kilometrów długości i 200 km szerokości. Jak informuje ESA, bogaty w wodę obszar ma niemal powierzchnię Holandii (ok. 41,5 tysiąca km2).
      Aleksiej Malachow z Rosyjskiej Akademii Nauk, wyjaśnia, że FREND obserwuje ilość neutronów emitowanych z powierzchni Marsa pod wpływem promieniowania kosmicznego. Obszary bardziej suche emitują więcej neutronów niż bardziej wilgotne.
      Okazało się, że centralna część Valles Marineris jest pełna wody. Jest im tam znacznie więcej, niż mogliśmy się spodziewać, dodaje uczony. Woda może tam występować w postaci lodu lub być związana z minerałami w glebie. Jednak inne badania Mara wykazały, że tamtejsze minerały zawierają niewiele wody, znacznie mniej niż teraz odkryto. Dlatego też sądzimy, że ta woda jest w postaci lodu, stwierdza Malachow.
      Naukowcy przyznają, że potrzebne są dalsze badania, by określić, w jakiej formie występuje zaobserwowana woda. Niezależnie jednak od tego, sam fakt, że znajduje się ona tak płytko pod powierzchnią oznacza, że jest łatwo dostępna.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzisiaj ok. godziny 11:30 czasu polskiego z przylądka Canaveral wystartowała misja Lucy – pierwsza w historii misja do asteroid trojańskich. Znajdują się one poza orbitą Jowisza, w odległości ok. 850 milionów kilometrów od Słońca. Są pozostałościami po formowaniu się planet, więc ich badania powinny dostarczyć nowych informacji na temat początków Układu Słonecznego. Lucy doleci do nich za 12 lat.
      Asteroidy trojańskie, zwane trojanami Jowisza lub po prostu Trojanami, tworzą dwie grupy. Jedna z nich znajduje się w punkcie libracyjnym L4 orbity Jowisza, a druga w punkcie L5. Przyjęło się, że asteroidy z punktu L4 nazywa się imionami greckich bohaterów, dlatego też cała grupa zyskała nieoficjalną nazwę „Greków”. Z kolei asteroidy z punktu L5 zwane są „Trojańczykami”. Obie grupy poruszają się po orbicie Jowisza, a kierunek ruchu powoduje, że Trojańczycy gonią Greków.
      Co interesujące, zanim taki podział na grupy został ustalony dwie wcześniej odkryte asteroidy – Patroklus i Hektor – zostały już nazwane. W efekcie, w grupie Trojańczyków znajduje się grecki szpieg, a w grupie Greków jest szpieg trojański.
      Lucy najpierw przeleci dwukrotnie w pobliżu Ziemi. Następnie poleci do L4, czyli Greków. Tam w latach 2027–2028 spotka się z Eurybatesem i jego satelitą Polimele, a następnie z Leukusem i Orusem. Później podąży w kierunku L5 (Trojańczyków). Po drodze odwiedzi Donaldjohansona, asteroidę z głównego pasa, nazwaną tak na cześć odkrywcy szczątków hominina Lucy, od którego misja wzięła nazwę. Ponownie przeleci też w pobliżu Ziemi. Po dotarciu do Trojańczyków w roku 2033 Lucy przeleci obok podwójnego układu Patroclus-Menoetius. Po wykonaniu zadania Lucy będzie krążyła pomiędzy obiema grupami asteroid trojańskich, odwiedzając każdą z nich co sześć lat.
      Co ciekawe, pojazd zasilany będzie przez energię słoneczną, a że będzie to najdalsza od Słońca misja zasilana w ten sposób, wyposażono ją w gigantyczne rozkładane panele słoneczne. Są tak wielkie, że mogłyby przykryć kilkupiętrowy budynek. Gdy są złożone ich grubość wynosi zaledwie 10 cm. Po rozłożeniu każdy z paneli ma średnicę 7,3 metra, waży 77 kilogramów i... nie jest w stanie utrzymać własnej wagi w polu grawitacyjnym Ziemi.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...