Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Kwantowy memrystor zapowiada epokę kwantowej architektury neuromorficznej

Recommended Posts

Naukowcy z Austrii i Włoch stworzyli „kwantowy memrystor”, urządzenie zdolne do przekazywania koherentnej informacji kwantowej w postaci superpozycji pojedynczych fotonów. Urządzenie takie może stać się podstawą do stworzenia kwantowej wersji architektury neuromorficznej, której działanie ma naśladować pracę ludzkiego mózgu.

Memrystor, to czwarty podstawowy typ elementu elektronicznego. Od dawna znaliśmy opornik, kondensator i cewkę. W 1971 roku profesor Leon Chua z Kalifornii wysunął hipotezę, że może istnieć czwarty element, który nazwał opornikiem pamięci czyli memrystorem. Urządzenie takie powstało niemal 40 lat później, w 2008 roku. Memrystory szybko okazały się bardziej przydatne, niż sądzono, a przed dwoma laty wykorzystano je do zbudowania urządzenia działającego podobnie jak neuron.

Badania  nad tym elementem elektronicznym ciągle trwają, a najnowszym osiągnięciem jest połączenie go z technologią kwantową.

Memrystor współpracujący ze stanami kwantowymi i przekazujące kwantowe informacje został zbudowany przez uczonych z Uniwersytetu Wiedeńskiego, Politechniki Mediolańskiej i włoskiej Narodowej Rady Badawczej. Stworzono go za pomocą femtosekundowego lasera emitującego krótkie impulsy światła trwające zaledwie 10-15 sekundy. Za pomocą tych impulsów naukowcy rzeźbili w szkle falowody, kanały zdolne do więzienia lub przesyłania światła.

Michele Spagnolo i jego zespół wykorzystali falowody do przesyłania pojedynczych fotonów. Dzięki ich kwantowej naturze znajdujące się w superpozycji fotony można było w tym samym czasie wysyłać przez dwa lub więcej falowodów. Za pomocą bardzo zaawansowanych wykrywaczy pojedynczych fotonów mogliśmy dokonywać pomiaru fotonu w jednym z falowodów, a następnie wykorzystać ten pomiar do kontrolowania urządzenia modulując transmisję w innym falowodzie. W ten sposób nasze urządzenie zachowywało się jak memrystor, wyjaśnia Michele Spagnolo. Oprócz uzyskania w ten sposób zachowania typowego dla memrystora, naukowcy – za pomocą symulacji – wykazali, że sieć optyczna zawierająca kwantowe memrystory będzie zdolna do nauki rozwiązywania problemów zarówno w sposób klasyczny, jak i kwantowy. To zaś wskazuje, że kwantowy memrystor może być tym elementem, który połączy sztuczną inteligencję i komputery kwantowe.

Klasyczne memrystory są obecnie używane w badaniach nad komputerowymi platformami neuromorficznymi. Dlatego też włosko-austriacki zespół sądzi, że kwantowy memrystor może przyczynić się do powstania kwantowych sieci neuromorficznych.

Uwolnienie pełnego potencjału możliwości sztucznej inteligencji zbudowanej na systemach kwantowych to jedno z najważniejszych obecnie wyzwań fizyki kwantowej i informatyki, dodaje Spagnolo. Uczony dodaje, że jego grupa już rozpoczęła prace nad odpowiednim urządzeniem. Jej pierwszym celem jest stworzenie urządzenia składającego się z kilkunastu kwantowych memrystorów operującego na kilkunastu fotonach. To poważne wyzwanie technologiczne, przyznaje naukowiec.


« powrót do artykułu

Share this post


Link to post
Share on other sites
W dniu 2.05.2022 o 11:40, KopalniaWiedzy.pl napisał:

Urządzenie takie może stać się podstawą do stworzenia kwantowej wersji architektury neuromorficznej, której działanie ma naśladować pracę ludzkiego mózgu.

Poczekamy, zobaczymy. ;)

W dniu 2.05.2022 o 11:40, KopalniaWiedzy.pl napisał:

Mamrystor, to czwarty podstawowy typ elementu elektronicznego.

1. Zdecydowanie jednak rezystor MEMOWY. ;) Mammografia to nie ten dział. :D
2. Teoria daje jednak SZEŚĆ " podstawowych" (takie piękne równania i pomijamy oczywiście tautologie) elementów. Szkoda tylko, że RZECZYWISTOŚĆ naturalnie objawia się trzema. ;)

W dniu 2.05.2022 o 11:40, KopalniaWiedzy.pl napisał:

Michele Spagnolo i jego zespół wykorzystali falowody do przesyłania pojedynczych fotonów. Dzięki ich kwantowej naturze znajdujące się w superpozycji fotony można było w tym samym czasie wysyłać przez dwa lub więcej falowodów.

Nie łapię. POJEDYNCZE w tym samym czasie przez dwa lub więcej? ;)

W dniu 2.05.2022 o 11:40, KopalniaWiedzy.pl napisał:

Klasyczne memrystory są obecnie używane w badaniach nad komputerowymi platformami neuromorficznymi. Dlatego też włosko-austriacki zespół sądzi, że kwantowy memrystor może przyczynić się do powstania kwantowych sieci neuromorficznych.

No cóż. Może to być całkowicie zgubna projekcja, ale osobiście sądzę, że zastosowania przerosną twórców. ;)

W dniu 2.05.2022 o 11:40, KopalniaWiedzy.pl napisał:

Uwolnienie pełnego potencjału możliwości sztucznej inteligencji zbudowanej na systemach kwantowych to jedno z najważniejszych obecnie wyzwań fizyki kwantowej i informatyki, dodaje Spagnolo.

:o Strach się bać... Od dawna jednak opowiadam się za uwolnieniem elektronów.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Teleskop Webba zarejestrował pierwsze fotony. Z powodzeniem przebyły one całą drogę przez układ optyczny i trafiły do NIRCam. To jedno z najważniejszych osiągnięć zaplanowanego na trzy miesiące etapu dostrajania teleskopu. Dotychczas uzyskane wyniki odpowiadają oczekiwaniom i naziemnym symulacjom.
      NIRCam to działająca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. To ona zarejestruje światło z pierwszych gwiazd i galaktyk, pokaże gwiazdy w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej oraz obiekty w Pasie Kuipera. Wyposażono ją w koronografy, instrumenty pozwalające na fotografowanie bardzo słabo świecących obiektów znajdujących się wokół obiektów znacznie jaśniejszych. Koronografy blokują światło jasnego obiektu, uwidaczniając obiekty słabo świecące. Dzięki nim astronomowie chcą dokładnie obserwować planety krążące wokół pobliskich gwiazd i poznać ich charakterystyki. NIRCam wyposażono w dziesięć czujników rtęciowo-kadmowo-telurkowych, które są odpowiednikami matryc CCD ze znanych nam aparatów cyfrowych. To właśnie NIRCam jest wykorzystywana do odpowiedniego ustawienia zwierciadła webba.
      Żeby zwierciadło główne teleskopu działało jak pojedyncze lustro trzeba niezwykle precyzyjnie ustawić względem siebie wszystkie 18 tworzących je segmentów. Muszę one do siebie pasować z dokładnością do ułamka długości fali światła, w przybliżeniu będzie to ok. 50 nanometrów.
      Teraz, gdy zwierciadło jest rozłożone, a instrumenty włączone, rozpoczęliśmy wieloetapowy proces przygotowywania i kalibrowania teleskopu. Będzie on trwał znacznie dłużej niż w przypadku innych teleskopów kosmicznych, gdyż zwierciadło główne Webba składa się z 18 segmentów, które muszą działać jak jedna wielka powierzchnia, wyjaśniają eksperci z NASA.
      Najpierw trzeba ustawić teleskop względem jego platformy nośnej. Wykorzystuje się w tym celu specjalne systemy śledzenia gwiazd. Obecnie położenie platformy nośnej i segmentów lustra względem gwiazd nie jest ze sobą zgodne. Dlatego też wybrano jedną gwiazdę, jest nią HD 84406, względem której całość będzie ustawiana.
      Każdy z 18 segmentów zwierciadła rejestruje obraz tej gwiazdy, a jako że są one w różny sposób ustawione, na Ziemię trafią różne niewyraźne obrazy. Obsługa naziemna będzie następnie poruszała każdym z segmentów z osobna, by określić, który z nich zarejestrował który z obrazów. Gdy już to będzie wiadomo, segmenty będą obracane tak, by wszystkie z uzyskanych obrazów miały podobny wspólny punkt. Stworzona w ten sposób „macierz obrazów” zostanie szczegółowo przeanalizowana.
      Wówczas rozpocznie się drugi etap ustawiania zwierciadła, w ramach którego zredukowane zostaną największe błędy ustawienia. Najpierw obsługa poruszy nieco zwierciadłem wtórnym, co dodatkowo zdeformuje obrazy uzyskiwane z poszczególnych segmentów. Dzięki temu możliwe będzie przeprowadzenie analizy matematycznej, która precyzyjnie określi błędy w ułożeniu każdego z segmentów. Po skorygowaniu tych błędów otrzymamy 18 dobrze skorygowanych ostrych obrazów.
      W kolejnym etapie położenie każdego z segmentów lustra będzie zmieniane tak, by generowany przezeń obraz trafił dokładnie do środka pola widzenia teleskopu. Każdy z 18 segmentów został przypisany do jednej z trzech grup (oznaczonych jako A, B i C), więc ten etap prac będzie wykonywany w grupach.
      Po zakończeniu trzeciego etapu będziemy już mieli jeden obraz, jednak będzie to nadal obraz uzyskany tak, jakbyśmy nałożyli na siebie obrazy z 18 różnych teleskopów. Zwierciadło główne wciąż nie będzie działało jak jedno lustro. Rozpocznie się, przeprowadzany trzykrotnie, etap (Coarse Phasing) korygowania ustawienia segmentów lustra względem siebie. Po każdej z trzech części tego etapu ustawienia będą sprawdzane i korygowane za pomocą specjalnych elementów optycznych znajdujących się wewnątrz NIRCam (Fine Phasing). W jego trakcie obraz z poszczególnych zwierciadeł celowo będzie ustawiany poza ogniskową i prowadzone będą analizy zniekształceń. Ten ostatni proces superprecyzyjnej korekty ustawień będzie zresztą przeprowadzany rutynowo podczas całej pracy Webba.
      Gdy już teleskop zostanie odpowiednio ustawiony, rozpocznie się etap dostrajania pozostałych trzech instrumentów naukowych. Wyłapane zostaną ewentualne błędy i niedociągnięcia, a specjalny algorytm pokaże, jakich poprawek trzeba dokonać. W końcu, w ostatnim etapie prac, obsługa naziemna osobno sprawdzi jakość obrazu uzyskiwanego dzięki każdemu z segmentów zwierciadła głównego i usunie ewentualne błędy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.
      Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.
      Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.
      Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.
      Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
      W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Modulowane kwantowe metapowierzchnie mogą posłużyć do kontrolowania wszystkich właściwości fotonicznego kubitu, uważają naukowcy z Los Alamos National Laboratory (LANL). To przełomowe spostrzeżenie może wpłynąć na rozwój kwantowej komunikacji, informatyki, systemów obrazowania czy pozyskiwania energii. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
      Badania nad klasycznymi metapowierzchniami prowadzone są od dawna. My jednak wpadliśmy na pomysł modulowania w czasie i przestrzeni właściwości optycznych kwantowych metapowierzchni. To zaś pozwala na swobodne dowolne manipulowanie pojedynczym fotonem, najmniejszą cząstką światła, mówi Diego Dalvit z grupy Condensed Matter and Complex System w Wydziale Teorii LANL.
      Metapowierzchnie to ultracienkie powierzchnie, pozwalające na manipulowanie światłem w sposób, jaki zwykle nie występuje powierzchnie. Zespół z Los Alamos stworzył metapowierzchnię wyglądającą jak zbiór poobracanych w różne strony krzyży. Krzyżami można manipulować za pomocą laserów lub impulsów elektrycznych. Pojedynczy foton, przepuszczany przez taką metapowierzchnię, wchodzi w stan superpozycji wielu kolorów, stanów, dróg poruszania się, tworząc kwantowy stan splątany. W tym przypadku oznacza to, że foton jest w stanie jednocześnie przybrać wszystkie właściwości.
      Modulując taką metapowierzchnię za pomocą lasera lub impulsu elektrycznego, możemy kontrolować częstotliwość pojedynczego fotonu, zmienać kąt jego odbicia, kierunek jego pola elektrycznego czy jego spin, dodaje Abul Azad z Center for Integrated Nanotechnologies.
      Poprzez manipulowanie tymi właściwościami zyskujemy możliwość zapisywania informacji w fotonach.
      Naukowcy pracują też nad wykorzystaniem modulowanej kwantowej metapowierzchni do pozyskania fotonów z próżni. Kwantowa próżnia nie jest pusta. Pełno w niej wirtualnych fotonów. Za pomocą modulowanej kwantowej metapowierzchni można w sposób efektywny pozyskiwać te fotony i zamieniać je w realne pary fotonów, wyjaśnia Wilton Kort-Kamp.
      Pozyskanie fotonów z próżni i wystrzelenie ich w jednym kierunku, pozwoli uzyskać ciąg w kierunku przeciwnym. Niewykluczone zatem, że w przyszłości uda się wykorzystać ustrukturyzowane światło do generowania mechanicznego ciągu, a wszystko to dzięki metapowierzchniom i niewielkiej ilości energii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwa niezależne zespoły badawcze stworzyły kwantowe wzmacniacze zdolne do przechowywania multipleksowanych sygnałów, przekazywania splątanych cząstek i pracy na częstotliwościach używanych w telekomunikacji. To bardzo ważny krok w rozwoju skalowalnego kwantowego internetu.
      Kwantowa sieć komputerowa nie tylko byłaby siecią znacznie bardziej bezpieczną, ale również pozwalałaby np. na dystrybucję zadań obliczeniowych pomiędzy komputerami kwantowymi, co z kolei umożliwiłoby na rozwiązywanie niezwykle złożonych problemów.
      Zasadniczym elementem kwantowego internetu będą kwantowo splatane połączenia pomiędzy węzłami takiej sieci. Problem jednak w tym, że tworzenie stanu splątanego przy dużym transferze danych na duże odległości jest bardzo trudne. Wynika to z faktu, że kwantowa informacja ulega degradacji podczas przesyłania, a zasady mechaniki kwantowej nie pozwalają na użycie standardowych wzmacniaczy. Potrzebne są więc wzmacniacze kwantowe, wzmacniające informację i podlegające zasadom fizyki kwantowej.
      Dwie niezależne grupy badawcze, jedna z hiszpańskiego Instytutu Nauk Fotonicznych (ICFO – Institut de Ciències Fotòniques), druga zaś z Uniwersytetu Nauki i Technologii Chin (USTC), pokazały, jak kwantowe układy pamięci mogą posłużyć do budowy praktycznych kwantowych wzmacniaczy.
      Oba zespoły użyły źródeł par fotonów, gdzie jeden z fotonów jest składowany w kwantowej pamięci, a drugi jest wysyłany jako sygnał rozgłaszający i potwierdzający splątanie. Multipleksing, rozumiany tutaj jako możliwość jednoczesnego składowania wielu sygnałów w postaci fotonów o różnych długościach fali jest realizowany za pomocą protokołu kwantowego optycznego grzebienia częstości. Dzięki temu taki system nie musi czekać na udane zakończenie rozgłaszania przed wygenerowaniem kolejnej pary fotonów. Co bardzo ważne, całość pracuje na częstotliwościach używanych obecnie w systemach telekomunikacyjnych, jest więc kompatybilna z już istniejącymi sieciami.
      Hiszpanie stworzyli system, który wykorzystuje pamięć kwantową przechowującą fotony w milionach atomów przypadkowo rozrzuconych w krysztale wzbogaconym metalem ziem rzadkich. Użyli przy tym różnych długości fali, 606 nm dla przechowywania i 1436 nm (częstotliwość telekomunikacyjna) dla rozgłaszania splątania. Ich system może przechowywać sygnały przez 25 mikrosekund zanim je uwolni. Splątanie uzyskiwane jest pomiędzy dwoma układami przechowującymi foton w superpozycji. Układy znajdują się w odległości 10 metrów od siebie.
      Z kolei Chińczycy wykorzystali kwantowe układy pamięci bazujące na kryształach wzbogaconych jonami metali ziem rzadkich. Zbudowali dwa węzły i stację pośrednią pomiędzy nimi. W każdym z węzłów przechowywany jest jeden z pary splątanych fotonów. Jeden z fotonów z pary uwalniany jest po 56 nanosekundach w celu analizy, a drugi przechodzi do stacji pośredniej. Dokonywany jest wspólny dla nich pomiar stanu Bella. Węzły dzieli odległość 3,5 metra.
      Musimy jeszcze pokonać sporo przeszkód technologicznych, mówi lider hiszpańskiej grup badawczej, Hugues de Riedmatten. Chcemy uzyskać lepszą stabilizację częstotliwości czy lepszą kontrolę nad liczoną w setkach nanometrów długością łączy optycznych. Pracujemy nad poprawieniem wydajności źródła,z wydłużeniem czasu przechowywania informacji w kwantowej pamięci i systemami odczytu danych. Zmierzamy w kierunku budowy wielowęzłowej sieci i zwiększenia odległości pomiędzy kwantowymi wzmacniaczami.
      Z kolei Zhou Zongquan z USTC powiedział: przeprowadziliśmy kompletną demonstrację podstawowego połączenia w kwantowym wzmacniaczu. Chińczycy zapowiadają ulepszenia źródła światła w celu zwiększenia tempa uzyskiwania splątania. Dodają, że zanim ich system znajdzie praktyczne zastosowanie, konieczne będzie znaczące poprawienie parametrów kwantowej pamięci.
      Ronald Hanson z Uniwersytetu Technologicznego w Delft chwali prace obu zespołów. Mówi, że to ważny krok w kierunku budowy praktycznych wzmacniaczy kwantowych, a niezwykle ważny jest fakt, że urządzenia pracują z częstotliwościami współczesnych sieci telekomunikacyjnych.
      Pod wrażeniem jest też Rodney Van Meter z japońskiego Keio Univeristy. Oba zespoły osiągnęły coś znaczącego: stworzyły dwie pary splątanych fotonów, przechowały po dwa fotony w różnych układach pamięci oddalonych od siebie na pewną odległość, a dwa kolejne wysłały w tym czasie, by przeprowadzić pomiar.
      Osiągnięcia USTC i ICFO zostały opisane na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chińscy naukowcy donieśli, że układ optyczny przeprowadził kwantowe obliczenia zwane gaussowskim próbkowaniem bozonu (Gaussian boson sampling – GBS) ok. 100 bilionów razy szybciej niż mogą to zrobić klasyczne superkomputery. Osiągnięciem takim pochwalili się na łamach Science Jian-Wei Pan i Chao-Yang Lu oraz ich koledzy z Chińskiego Uniwersytetu Nauki i Technologii w Hefei.
      Co prawda metoda GBS powstała po to, by wykazać, że komputery kwantowe mogą osiągnąć kwantową supremację – czyli wykonać obliczenia, jakich komputery klasyczne nie są w stanie wykonać w rozsądnym czasie – ale można ją przystosować do niektórych wyspecjalizowanych praktycznych obliczeń.
      Żeby zrozumieć, na czym polega próbkowanie bozonów, wyobraźmy sobie układ optyczny z wieloma wejściami i wyjściami. Do układu wpuszczamy pojedyncze fotony, które napotykają na różne komponenty optyczne, jak dzielniki wiązki czy lustra. Zadaniem metody próbkowania bozonów jest odgadnięcie, jak fotony pojawią się na wyjściu. Taki układ możemy więc postrzegać jako matrycę dokonującą transformacji konfiguracji fotonów wpuszczonych na wejściu w konfigurację wyjściową. Określenie konfiguracji wyjściowej jest bardzo trudne nawet dla niewielkiej matrycy z rozdzielaczy i lusterek.
      Układ optyczny, który wykorzystali Chińczycy, ma 100 punktów wejścia i 100 punktów wyjścia i składa się z losowo rozłożonych 300 rozdzielaczy wiązki i 75 lusterek. Wszystkie elementy były ze sobą nawzajem połączone, więc foton, który wszedł w dowolnym punkcie wejścia mógł pojawić się dowolnym punkcie wyjścia.
      Chińczycy poinformowali, że GBS wykonała odpowiednie obliczenia w ciągu około 200 sekund. Tymczasem najszybszy chiński superkomputer – Sunway TaihuLight – który jest 4. najpotężniejszym superkomputerem na świecie, potrzebowałby na wykonanie tych samych obliczeń... ok. 2,5 miliarda lat.
      Ten eksperyment to z pewnością kamień milowy w dziedzinie symulacji kwantowych opartych na liniowych układach optycznych, mówi Christine Silberhorn z niemieckiego Uniwersytetu w Paderborn. Silberhorn jest jednym z twórców zaproponowanej w 2017 roku metody GBS. Uczona dodała, że samo przygotowanie systemu o rozmiarach 100x100 musiało być bardzo trudne. Z jej opinią zgadza się Ian Walmsley z Imperial College London, który dodatkowo chwali chińskich naukowców za heroiczny wyczyn, jakim było przygotowanie stanów kwantowych, które są całkowicie nierozróżnialne i upewnienie się, że fotony nie zostały utracone.
      Chao-Yang Lu mówi, że wraz z kolegami na tyle ulepszyli GBS, że możliwe będzie przeprowadzenie eksperymentu na macierzy 144x144. W 2021 roku nasza maszyna GBS będzie łatwiejsza w dostrojeniu, mniejsza i bardziej stabilna. Zaczynamy zastanawiać się nad jej wdrożeniem do celów praktycznych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...