Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Doktorantka z PWr od paru lat pracuje nad specjalnymi rusztowaniami 3D dla komórek czerniaka

Recommended Posts

Przed testami na organizmach leki przeciwnowotworowe są testowane na hodowlach komórek. Naukowcy starają się odtworzyć warunki panujące w ciele. Nad symulującymi tkankę guza rusztowaniami 3D dla komórek czerniaka pracuje od jakiegoś czasu doktorantka z Politechniki Wrocławskiej - mgr inż. Agnieszka JankowskaDo ich wytworzenia używa hydrożelowego biopolimeru – alginianu sodu, polimeru pochodzenia naturalnego, pozyskiwanego z morskich wodorostów.

Naukowcy podkreślają, że gdy odpowiednio dobierze się parametry, hydrożel może mieć zbliżone właściwości do tkanki, w której zachodzi namnażanie komórek nowotworu. Oprócz tego cechuje go biokompatybilność, mała toksyczność i niska cena. Co ważne, można go też formować. Nic więc dziwnego, że często stosuje się go do tworzenia rusztowań czy nośników leków.

Odtwarzanie warunków panujących w żywych organizmach

Jest pewien paradoks w moich badaniach. Robię teraz wszystko, żeby stworzyć jak najlepsze warunki dla komórek nowotworowych. Tak by jak najszybciej się rozwijały i namnażały podobnie jak w ludzkim ciele. Wszystko po to, by potem potraktować je lekami, które – mamy nadzieję – je zniszczą i pozwolą na opracowanie spersonalizowanych terapii - mówi Jankowska.

Promotorami pracy doktorskiej mgr inż. Jankowskiej są naukowcy z PWr i Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu: dr hab. inż. Jerzy Detyna i dr hab. n. med. inż. Julita Kulbacka.

Doktorantka wyjaśnia, że przez to, że są płaskie (mają postać 2D), hodowle nie odzwierciedlają zbyt dokładnie warunków panujących w żywych organizmach. Komórki nowotworowe inaczej w nich funkcjonują. Mają ze sobą kontakt tylko na krawędziach, zmieniają swój kształt i zupełnie inaczej współpracują z sąsiadującymi komórkami, nie będąc w stanie stworzyć mikrośrodowiska - podkreślono w komunikacie prasowym uczelni.

Ma to poważne konsekwencje, ponieważ niejednokrotnie okazuje się, że leki, które w laboratorium sprawowały się bardzo dobrze, w organizmach żywych mają już niższą skuteczność. Nic więc dziwnego, że z myślą o skróceniu badań klinicznych naukowcy z różnych ośrodków dążą do badań na trójwymiarowych strukturach.

Prace nad parametrami

Rusztowanie 3D mgr inż. Jankowskiej składa się ze wspomnianego alginianu sodu, a także żelatyny i różnych innych dodatków. Doktorantka stara się ustalić odpowiednie parametry. To bardzo ważne, bo odchylenia procesu drukowania będą oddziaływać na zwartość konstrukcji czy przeżycie komórek.

[...] Uzyskanie z hydrożeli struktur o konkretnym kształcie to duże wyzwanie. Podobnie jak zagwarantowanie warunków, w których komórki nowotworowe przeżyją proces biodruku. Trzeba więc ustalić właściwe stężenie, rodzaje dodatków, wilgotność, temperaturę otoczenia i tuszu w głowicy oraz stołu drukarki, ale także m.in. prędkość druku, ciśnienie, średnicę dyszy albo igły drukującej, ścieżkę drukowania i wiele innych parametrów - wylicza Jankowska, dodając, że znalezienie właściwych parametrów wymaga czasu, to praca na lata.

W przyszłości doktorantka chce drukować za pomocą dwóch głowic drukarki naraz. Pierwszą warstwę utworzy hydrożel z lekiem przeciwnowotworowym (terapeutykiem), drugą - hydrożel z komórkami nowotworowymi.

Co po badaniach podstawowych?

[...] Gdy zakończę badania podstawowe, kolejną ścieżką badań mogłyby być próby wytworzenia struktur przepływowych. Rusztowanie, nad którym teraz pracuję, będzie strukturą stałą. Do otoczonych lekiem komórek, które znajdą się w środku, nic już więcej nie będziemy mogli dostarczyć. Natomiast struktura przepływowa mogłaby symulować cały system odprowadzania i doprowadzania krwi w organizmie, z odpowiednim ciśnieniem i w odpowiednim cyklu. Dzięki temu badania leków jeszcze lepiej oddawałyby ich działanie w naszym ciele - wskazuje badaczka.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W naszych organizmach bez przerwy znajdują się tysiące komórek, w których DNA pojawiły się błędy mogące powodować nowotwory. Jednak tylko w rzadkich przypadkach rzeczywiście dochodzi do rozwoju choroby. Standardowe wyjaśnienie tego fenomenu jest takie, że potrzebna jest odpowiednia liczba konkretnych mutacji, by pojawił się nowotwór. Nauka zna jednak liczne przypadki, gdy ten sam zestaw mutacji raz powoduje nowotwór, a raz nie.
      Dobrym przykładem takiego zjawiska są pieprzyki na skórze. Komórki, z których one powstają, nie są normalne pod względem genetycznym. Często zawierają one zmutowany gen BRAF, który – gdy znajdzie się w komórkach poza pieprzykiem – często powoduje czerniaka. Jednak zdecydowana większość pieprzyków u zdecydowanej większości ludzi nigdy nie zamienia się w guzy nowotworowe.
      Na łamach Science opublikowano właśnie artykuł, z którego dowiadujemy się, że powstanie czerniaka zależy od czegoś, co autorzy badań nazwali „kompetencją onkogeniczną”. Jest ona wynikiem współpracy pomiędzy mutacjami DNA w komórce a konkretnym zestawem genów, które są w niej aktywowane. Jak się okazało, komórki posiadające kompetencję onkogeniczną do utworzenia czerniaka mają dostęp do zestawu genów, które normalnie są nieaktywne w dojrzałych melanocytach. Odkrycie to wyjaśnia, dlaczego jedne komórki tworzą guzy nowotworowe, a inne nie. Pewnego dnia odkrycie to może zostać wykorzystane do walki z nowotworami.
      Dotychczas sądzono, że do rozwoju nowotworu konieczne jest pojawienie się dwóch mutacji DNA: aktywny onkogen i nieaktywny antyonkogen. Teraz naukowcy ze Memorial Sloan Kettering Cancer Center (MSK) odkryli trzeci element. Zauważyli bowiem, że do pojawienia się czerniaka potrzebny jest dostęp do genów, które są zwykle wyłączone w dojrzałych melanocytach. Aby ten dostęp mieć, komórki potrzebują specyficznych protein. Bez nich guz się nie utworzy, nawet jeśli występują powiązane z nowotworem mutacje DNA.
      Przed ponad 10 laty profesor Richard White badał rozwój czerniaka u danio pręgowanego. To złośliwy nowotwór skóry i błon śluzowych wywodzący się z komórek pigmentowych, melanocytów. Przeprowadzone wówczas analizy wykazały, że w guzach aktywne są liczne geny charakterystyczne bardziej dla komórek embrionalnych, a nie dojrzałych melanocytów. Zaczęliśmy się więc zastanawiać, dlaczego geny te zostały włączone. Czy są one ważne dla rozwoju guza, a jeśli tak, to w jaki sposób, mówi White.
      Naukowcy wzięli na warsztat gen BRAF, którego zmutowana forma jest obecna w połowie przypadków czerniaka. Gen ten aktywowano w komórkach danio na trzech różnych etapach ich rozwoju. Na etapie grzebienia nerwowego (NC), z którego rozwija się wiele różnych komórek, w tym melanocyty; na etapie melanoblastu (MB), czyli komórki prekursorowej melanocytu, oraz na etapie dojrzałego melanocytu (MC). Okazało się, że do rozwoju guzów doszło tylko u tych ryb, u których zmutowana forma BRAF została aktywowana na etapie NC i MB.
      Następnie uczeni wprowadzili zmutowany BRAF do ludzkich macierzystych komórek pluripotencjalnych znajdujących się na tych samych trzech stadiach rozwoju, co komórki badane u ryb, i wszczepili je myszom. I znowu okazało się, że tylko w przypadku komórek w dwóch stadiach rozwoju, NC i MB, pojawiły się guzy nowotworowe.
      Badacze zaczęli więc poszukiwać różnic molekularnych pomiędzy komórkami. Zauważyli, że różnica dotyczy genu ATAD2, który kontroluje dynamikę chromatyny, substancji występującej w jądrze komórkowym. Gen ten był aktywny w komórkach NC i MB, ale nie MC. Gdy naukowcy usunęli ATAD2 z podatnych na czerniaka danio pręgowanych, guzy nie powstały. Gdy zaś wprowadzili aktywny ATAD2 do dojrzałych melanocytów (MC), komórki zyskały zdolność tworzenia guza.
      Autorzy badań przeanalizowali następnie dane kliniczne zarówno pacjentów Memorial Sloan Kettering Cancer Center jak i dane dostępne w Cancer Genome Atlas. Zauważyli, że ATAD2 jest ważnym czynnikiem rozwoju czerniaka. Okazało się bowiem, że pacjenci, u których gen ten był bardziej aktywny, mieli mniejsze szanse przeżycia. Wydaje się więc, że jest on istotny dla rozwoju nowotworu. Mutacje DNA są jak zapalniczka. Jeśli masz nieodpowiednie drewno lub jest ono mokre, może powstać iskra, ale nie będzie ognia. Jeśli jednak drewno jest odpowiednie, wszystko zaczyna się palić", mówi doktor Arianna Baggiolini.
      Technika pracy z pluripotencjalnymi komórkami macierzystymi, która została opracowana na potrzeby badań nad czerniakiem, może zostać wykorzystana podczas spersonalizowanego leczenia nowotworu. Richard White i Lorenz Studer z MSK uzyskują z krwi pacjentów pluripotencjalne komórki macierzyste. Następnie są w stanie wprowadzać do tych komórek specyficzne mutacje, charakterystyczne dla guza nowotworowego każdego pacjenta. W ten sposób tworzony jest indywidualny model choroby, na którym można testować wiele różnych leków, by sprawdzić, które dadzą najlepsze efekty u danej osoby.
      Wykorzystując pluripotencjalne komórki macierzyste możemy próbować stworzyć indywidualne modele choroby dla każdego pacjenta i każdego rodzaju tkanki. Mam nadzieję, że z czasem stanie się to standardową metodą leczenia nowotworów, mówi Studer.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele terapii przeciwnowotworowych pozwala skutecznie usunąć guzy czy komórki nowotworowe. Problem jednak stanowią nowotworowe komórki macierzyste (CSC), które mogą się reprodukować i doprowadzić do nawrotu choroby. Stworzenie leków, które byłyby w stanie zidentyfikować i niszczyć CSC poprawiłoby efektywność leczenia przeciwnowotworowego.
      CSC są obecne w guzach w bardzo małej liczbie, przez co trudno je odnaleźć. Dlatego też naukowcy z Uniwersytetu Hokkaido oraz japońskiego Narodowego Instytutu Badań nad Rakiem stworzyli nowatorski hydrożel, który – jak się okazało – błyskawicznie zmienia komórki nowotworowe w nowotworowe komórki macierzyste.
      Żel zawiera dwie sieci polimerowe o różnych właściwościach mechanicznych. Pierwszą sieć tworzy sztywny żel polielektrolitowy, drugą zaś elastyczny naturalny żel polimerowy.
      Nowatorski żel służy jako sztuczne mikrośrodowisko do wzbudzania reakcji w CSC. Główny autor badań, Shinya Tanaka mówi, że żel ten może stać się potencjalną bronią do zwalczania nowotworów i może mieć unikatowego zastosowania w medycynie regeneracyjnej.
      Elastyczność żelu przypomina środowisko wymagane przez CSC, przez co może pobudzać macierzyste komórki nowotworowe do odnawiania się i tworzenia nowej generacji komórek macierzystych, co może ułatwić wykrywanie CSC, poprawić diagnostykę oraz umożliwić wytwarzanie zindywidualizowanych leków.
      Naukowcy przeprowadzili testy efektywności swojego żelu. W tym celu hodowali w laboratorium linie komórek sześciu ludzkich nowotworów: mięsaka, nowotworu macicy, płuc, okrężnicy, pęcherza i mózgu. Okazało się, że zaledwie po 24 godzinach od nałożenia komórek na żel wszystkie komórki uformowały sferyczne struktury. Struktury zawierały one dużą liczbę CSC. Tymczasem w guzach pierwotnych komórki tego typu rzadko występują. Eksperyment wskazuje, że dzięki interakcji zróżnicowanych komórek nowotworowych z żelem dochodzi do ich przeprogramowania w nowotworowe komórki macierzyste.
      Badacze dodatkowo zajęli się glejakiem, bardzo śmiertelnym złośliwym nowotworem mózgu. Po kontakcie z żelem komórki nowotworowe pobrane od czterech pacjentów bardzo szybko zmieniły się w CSC. Naukowcy zauważyli, że w komórkach tych doszło do bardzo intensywnej ekspresji proteiny Sox2, która odpowiada za przeprogramowywanie komórek nowotworowych. Odkrycie tego mechanizmu pozwala na lepsze zrozumienie działania żelu.
      Obecnie japońscy naukowcy badają, w jaki sposób właściwości ich żelu wpływają na komórki, szczególnie zaś na tym, w jaki sposób jego właściwości chemiczne wpływają na proces przeprogramowywania komórek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na całym świecie żyją dziesiątki milionów osób, które w różnym stopniu utraciły sprawność fizyczną po urazowym uszkodzeniu mózgu. Nadzieją dla nich może być „klej do mózgu”, czyli specjalny hydrożel, opracowany w Regenerative Biosceinces Center na University of Georgia.
      Twórcy hydrożelu wykazali właśnie, że nie tylko chroni on przed dalszą utratą tkanki mózgowej po poważnym urazie, ale może również pomagać w regeneracji nerwów.
      Wyniki badań, opisanych na łamach Science Advances, dostarczają pierwszych wizualnych i funkcjonalnych dowodów na to, że pod wpływem „kleju do mózgu” następuje naprawa obwodów nerwowych. Nasze badania dają nam wgląd w to, jak przebiega regeneracja uszkodzonych regionów mózgu u zwierząt, przed którymi postawiono specyficzne zadania dotyczące sięgnięcia i schwytania przedmiotu, mówi profesor Lohitash Karumbaiah.
      Uczony stworzył specjalny hydrożel w 2017 roku. Został on zaprojektowany tak, by naśladował strukturę i funkcję cukrów w komórkach mózgu. Żel zawiera kluczowe struktury pozwalające mu na łączenie się z czynnikiem wzrostu fibroblastów i neurotroficznym czynnikiem pochodzenia mózgowego, dwoma ważnymi białkami, które zwiększają przeżywalność i regenerację komórek mózgu po urazie.
      Przeprowadzone długoterminowe badania wykazały, że po 10 tygodniach u zwierząt, u których zastosowano hydrożel "doszło do naprawy poważnie uszkodzonej tkanki mózgowej. Zwierzęta te szybciej się rehabilitowały, niż te, u których materiału tego nie stosowano".
      Badania trwały 4-5 lat. Wszystko jest tak szczegółowo udokumentowane, że po przeczytaniu wszystkich zebranych przez nas informacji, każdy uwierzy, iż pojawiła się nowa nadzieja dla ludzi z poważnym uszkodzeniem mózgu, mówi Charles Latchoumane, główny autor badań, który pracuje też w centrum NeurRestore w Lozannie. Centrum to skupia się na badaniach nad odwróceniem utraty funkcji neurologicznych u ludzi cierpiących na chorobę Parkinsone oraz inne schorzenia neurologiczne, do których doszło w wyniku urazu lub udaru.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Dana-Farber Cancer Institute, Brigham and Women's Hospital oraz Broad Institute poinformowali właśnie na łamach Nature Medicine, że szczepionka, podana przed czterema laty niewielkiej grupie pacjentów cierpiących na czerniaka, pobudziła układ odpornościowy do tego stopnia, iż wciąż kontroluje on rozprzestrzenianie się komórek tego niebezpiecznego nowotworu.
      Mowa tutaj o spersonalizowanej szczepionce NeoVax, która jest wycelowana w konkretne białka w komórkach guza każdego z pacjentów. Po czterech latach okazało się, że dzięki szczepieniu układ odpornościowy pacjentów nie tylko potrafi kontrolować komórki zawierające proteinę, przeciwko której szczepionka została przygotowana, ale rozpoznaje też inne proteiny z komórek nowotworowych.
      Odkrycie to pokazuje, ze spersonalizowana szczepionka antygenowa może stymulować długotrwałą odpowiedź immunologiczną u pacjentów z czerniakiem, mówi główna autorka badań, Catherine J. Wu. Zdobyliśmy dowody, że początkowa celowana odpowiedź immunologiczna z czasem uległa rozszerzeniu, dając pacjentom ochronę przed chorobą.
      To I faza badań klinicznych, w której udział wzięło 8 pacjentów. Wszystkim najpierw usunięto guzy chirurgicznie, jednak zaklasyfikowano ich jako osoby o wysokim ryzyku nawrotu nowotworu. Każdy z nich po zabiegu został zaszczepiony NeoVax, a szczepienie odbyło się średnio 18 tygodni po usunięciu guza.
      Szczepionka NeoVax wykonana jest z epitopów. To fragmenty antygenów łączące się bezpośrednio z wolnym przeciwciałem, receptorem limfocytu B lub T. Epitopy w NeoVax pochodzą z neoantygenów. To specyficzne dla nowotworu antygeny, które powstają w wyniku niestabilności genetycznej komórek nowotworu prowadzącej do licznych mutacji i powstania neoantygenów. Takie specyficzne dla nowotworu neoantygeny mają duży potencjał pobudzania odpowiedzi układu odpornościowego, gdyż nie występują na powierzchni zdrowych komórek. Niestety, w trakcie rozwoju choroby nowotworowej guz wytwarza liczne mechanizmy obronne, które osłabiają lub nawet całkowicie hamują odpowiedź immunologiczną organizmu. Stąd też pomysł na wspomożenie organizmu szczepionką w walce z nowotworem.
      Aby wykonać szczepionkę NeoVax naukowcy najpierw sekwencjonują DNA z komórek nowotworowych pacjenta, a następnie skanują je, by zidentyfikować kluczowe epitopy w neoantygenach. Po podaniu szczepionki limfocyty T atakują wszystkie komórki, na których powierzchni znajdują się takie epitopy. „Nawołują” one komórki nowotworowe do zwiększenia produkcji inhibitora cyklu komórkowego, co w efekcie prowadzi do śmierci komórki.
      Teraz dowiadujemy się, że średnio cztery lata po podaniu szczepionki 8 pacjentom wszyscy żyją, a u 6 z nich nie ma oznak aktywnie przebiegającej choroby. Po przeprowadzeniu analizy limfocytów T u każdego z pacjentów naukowcy zauważyli, że komórki odpornościowe atakują nie tylko te komórki nowotworowe, na powierzchni których występują takie epitopy, jak podane w szczepionce. Limfocyty nauczyły się rozpoznawania także innych epitopów na powierzchni komórek czerniaka. Wykryte limfocyty mają też cechy limfocytów pamięci, odpowiedzialnych za długotrwałą odporność.
      Dwóch pacjentów, u których nowotwór dał przerzuty do płuc, otrzymało inhibitory cyklu komórkowego. To środki, które powodują, że w cyklu komórkowym przy stwierdzeniu nieprawidłowości rozwoju znowu przeważają sygnały hamujące rozwój. Po podaniu inhibitorów stwierdzono, że limfocyty T przedostały się do wnętrza tkanki nowotworowej, gdzie mogą być najbardziej śmiertelne dla komórek nowotworu.
      Znaleźliśmy dowody na istnienie długotrwałej silnej odpowiedzi immunologicznej. Limfocyty T biorą na cel komórki nowotworu i zachowują pamięć o epitopach, przeciwko którym nakierowała je szczepionka. Doszło do aktywacji limfocytów T, które zabijają komórki nowotworu i – co niezwykle ważne – nauczyły się rozpoznawać epitopy, których nie było w oryginalnej szczepionce, mówi doktor Patrick A. Ott. Długotrwałe działanie i rozszerzenie zakresu atakowanych komórek nowotworowych przez limfocyty T wskazuje, że spersonalizowane peptydowe szczepionki neoantygenowe mogą pomagać w kontrolowaniu nowotworów dających przerzuty, szczególnie gdy połączy się je z inhibitorami punktów kontrolnych.
      Więcej na temat badań można przeczytać w artykułach Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma oraz Advances in the development of personalized neoantigen-based therapeutic cancer vaccines

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizycy teoretycy z Narodowego Centrum Badań Jądrowych i Uniwersytetu Zielonogórskiego wyznaczyli i podali niezwykle istotne parametry dla ponad 1300 jąder, w tym dla jąder pierwiastków superciężkich, które do tej pory nie zostały wytworzone w laboratoriach. Wyniki te zostały właśnie opublikowane w podstawowym czasopiśmie referencyjnym fizyki jądrowej Atomic Data and Nuclear Data Tables.
      Naukowcy w wielu ośrodkach na świecie nie ustają w dążeniach do wytworzenia i zbadania nowych pierwiastków oraz ich izotopów. Ten międzynarodowy wyścig ma na celu przede wszystkim poznanie nadal tajemniczych sił wiążących jądra atomowe. Badania koncentrują się równolegle na pracach eksperymentalnych wykorzystujących potężne akceleratory i detektory oraz na pracach teoretycznych, mających wskazać najbardziej obiecujące drogi poszukiwań i zaproponować modele, które będzie można potwierdzić lub odrzucić po konfrontacji z doświadczeniem. Polscy naukowcy od kilkudziesięciu lat specjalizują się właśnie w tego typu badaniach teoretycznych, stanowiąc światową czołówkę, czego dobitnym potwierdzeniem jest zaprezentowana właśnie niezwykle obszerna i kompletna praca.
      Trzech polskich uczonych - dr Piotr Jachimowicz z Uniwersytetu Zielonogórskiego oraz Michał Kowal i Janusz Skalski profesorowie w Narodowym Centrum Badań Jądrowych (NCBJ) - oszacowało kluczowe parametry dla 1305 jąder ciężkich i superciężkich w zakresie liczby atomowej Z od 98 do 126 (a więc także dla pierwiastków jeszcze nieodkrytych) i dla liczby neutronów N od 134 do 192.
      Do naszych obliczeń wykorzystaliśmy wielowymiarowy mikroskopowo-makroskopowy model pozwalający wyznaczyć energię wiązania jąder atomowych - tłumaczy dr Piotr Jachimowicz z UZ. Dla stanów podstawowych oraz tzw. punktów siodłowych wyznaczyliśmy takie parametry, jak: masy jądrowe, energie makroskopowe, poprawki powłokowe i deformacje jądrowe – czyli kształty, jakie przybierają jądra w stanie podstawowym, jak i w punkcie siodłowym. Z nich wyprowadziliśmy energie rozpadu alfa pomiędzy stanami podstawowymi, energie separacji jednego i dwóch nukleonów oraz statyczne, adiabatyczne wysokości barier rozszczepieniowych.
      Systematyczne rachunki dla jąder nieparzystych, szczególnie ich barier rozszczepieniowych, są bardzo rzadkie - nasza praca wypełnia tę lukę – dodaje dr hab. Michał Kowal, Kierownik Zakładu Fizyki Teoretycznej NCBJ. W przypadku układów z nieparzystą liczbą protonów, neutronów lub obu używaliśmy standardowej metody BCS z blokowaniem. Kształty i energie w stanie podstawowym mogliśmy znaleźć poprzez minimalizację siedmiu odkształceń osiowo-symetrycznych. Poszukiwania punktów siodłowych przeprowadziliśmy metodą tzw. "zatapiania" w trzech kolejnych etapach, stosując wielowymiarowe przestrzenie deformacji, co wiązało się z potrzebą generowania gigantycznych sieci symulujących różne jądrowe kształty. W tym celu zaprzęgliśmy do obliczeń nasz superkomputer w Centrum Informatycznym w Świerku.
      Część wyników uzyskanych przez badaczy dotyczy parametrów już poznanych w eksperymencie i bardzo dobrze się z tymi danymi zgadza. Stanowi to potwierdzenie poprawności przeprowadzonej analizy i pozwala wierzyć, że wyznaczone wartości nieznanych dotąd parametrów są wiarygodne.
      Uczeni podkreślają, że udało im się stworzyć jeden z najbardziej kompletnych zestawów danych dostępnych "na rynku", niezbędny do analiz przekrojów czynnych, czyli prawdopodobieństw wytwarzania jąder superciężkich w poszczególnych kanałach syntezy. Dokładność odtwarzania mas i innych wielkości wyznaczonych w analizowanym przez nas obszarze jest jedną z najlepszych pośród istniejących oszacowań - dodaje dr hab. Janusz Skalski. Wykorzystanie przez nas pięcio- i siedmiowymiarowych przestrzeni deformacji stanowi znaczący postęp w stosunku do innych obliczeń wykonywanych do tej pory. Przeprowadzona przez nas analiza jest też jedną z niewielu, które uwzględniają jądra nieparzyste, zwykle pomijane ze względu na trudności związane z traktowaniem nieparzystego nukleonu.
      Otrzymane wyniki nieprzypadkowo trafią do annałów Atomic Data and Nuclear Data Tables. Ich znaczenie nie ogranicza się bowiem tylko do eksperymentów mających na celu wytworzenie nowych nuklidów. Wyznaczyliśmy parametry, których znajomość może mieć istotne znaczenie także i dla innych obszarów badań - wyjaśnia dr hab. Michał Kowal. Między innymi wyznaczyliśmy własności dla jąder z grupy aktynowców, ważne z punktu widzenia fizyki reaktorowej. Wyznaczone i podane w pracy parametry mogą zostać wykorzystane w analizach astrofizycznych i przewidywaniach dotyczących nukleosyntezy na poszczególnych etapach ewolucji wszechświata.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...