Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Żółw z Rumunii przetrwał upadek asteroidy, która zabiła dinozaury

Recommended Posts

Paleobiolodzy z Uniwersytetu W Tybindze odkryli w Rumunii nieznany dotychczas gatunek żółwia, który przetrwał uderzenie asteroidy sprzed 66 milionów lat. Asteroidy, która przyniosła zagładę dinozaurom i 75% gatunków na Ziemi. Wiek skamieniałości oceniono na około 70 milionów lat. Nowy gatunek zyskał nazwę Dortoka vremiri na cześć znanego badacza fauny epoki kredy, Mátyása Vremira, który zmarł w 2020 roku.

Liczący 19 centymetrów długości Dortoka vremiri należy do podrzędu żółwi bokoszyjnych (Pleurodira), które obecnie występują w Ameryce Południowej, Afryce, Australii, na Madagaskarze i Nowej Gwinei. Obecnie nie istnieją żadni bliscy krewni tego gatunku. Najbliższy mu gatunek znamy ze skamieniałości sprzed około 57 milionów lat, również znalezionych w Rumunii. To właśnie te skamieniałości dowodzą, że Dortoka vremiri przetrwał uderzenie asteroidy.

Szczątki Dortoka vremiri znaleziono w basenie Haţeg w Transylwanii. To jedno z najważniejszych w Europie miejsc występowania skamieniałości z późnej kredy. Pierwszych odkryć dokonano tam ponad 120 lat temu. Najnowszego odkrycia dokonał zespół z Niemiec, Rumunii i Węgier.

Co interesujące, zamieszkujący dzisiejszą Europę Zachodnią inni członkowie rodziny, do której należał Dortoka vremiri, nie przetrwali uderzenia asteroidy. Nowo odkryty gatunek mógł przetrwać ze względu na większą odległość od miejsca katastrofy oraz dzięki lokalnemu środowisku. Jedynym żółwiem, który żył na tym samym terenie, był gatunek lądowy. On nie przetrwał. Dortoka vremiri zamieszkiwał słodkie wody. To pasuje do wcześniej obserwowanych wzorców z Ameryki Północnej, gdzie kręgowce lądowe znacznie bardziej ucierpiały w wyniku upadku asteroidy niż gatunki słodkowodne, mówi Zoltan Csiki-Sava z Uniwersytetu w Bukareszcie. Naukowcy przypuszczają, że mogło tak się stać, gdyż słodkowodny łańcuch pokarmowy opiera się na rozkładającej się materii organicznej, która jest dostępna nawet wówczas, gdy załamią się łańcuchy pokarmowe na lądzie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Wszystkie duże planety Układu Słonecznego posiadają pierścienie, w kręgach naukowych pojawiaj się sugestie, że pierścienie mógł posiadać Mars. To rodzi pytanie o ewentualne pierścienie wokół Ziemi. Naukowcy z australijskiego Monash University znaleźli pierwsze dowody sugerujące, że nasza planeta również posiadała pierścień. Uczeni przyjrzeli się 21 kraterom uderzeniowym pochodzącym z trwającego ok. 40 milionów lat okresu intensywnych bombardowań Ziemi przez meteoryty, do których doszło w ordowiku.
      Początek tego okresu wyznacza znaczny wzrost materiału pochodzącego z chondrytów L (chondryty oliwinowo-hiperstenowe), które znajdują się w warstwie sprzed 465,76 ± 0,30 milionów lat. Od dawna przypuszcza się, że bombardowanie to było spowodowane przez rozpad z pasie asteroid dużego obiektu zbudowanego z chondrytów L.
      Uczeni z Monash zauważyli, że wszystkie badane przez nich kratery uderzeniowe znajdowały się w ordowiku w pasie wokół równika, ograniczonym do 30 stopni szerokości północnej lub południowej. Tymczasem aż 70% kraterów uderzeniowych na Ziemi powstało na wyższych szerokościach geograficznych. Zdaniem uczonych, prawdopodobieństwo, że asteroidy, po których pozostały wspomniane kratery, pochodziły z pasa asteroid, wynosi 1:25 000 000. Dlatego też zaproponowali inną hipotezę.
      Andrew G. Tomkins, Erin L. Martin i Peter A. Cawood uważają, że około 466 milionów lat temu od przelatującej w pobliżu Ziemi asteroidy, w wyniku oddziaływania sił pływowych planety, oderwał się duży fragment, który rozpadł się na kawałki. Materiał ten utworzył pierścień wokół Ziemi. Stopniowo fragmenty pierścienia zaczęły opadać na planetę.
      Ponadto proponujemy, że zacienienie Ziemi przez pierścień było powodem pojawienia się hirnantu, piszą autory badań. Hirnant to krótkotrwały ostatni wiek późnego ordowiku. Jego początki wiązały się z ochłodzeniem klimatu, zlodowaceniem i znacznym spadkiem poziomu oceanów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Gdy po Ziemi wędrowały dinozaury, na Księżycu wybuchały wulkany, twierdzą naukowcy z Chińskiej Akademii Nauk. Takie wnioski płyną z analizy materiału zebranego przez misję Chang'e-5. Mamy wiele dowodów wskazujących na aktywność wulkaniczną na Księżycu, nie wiadomo jednak, jak długo ona trwała. Najmłodsze datowane skały wulkaniczne mają 2 miliardy lat. Z badań przeprowadzonych przez Chińczyków wynika jednak, że dinozaury były świadkami wybuchów wulkanów na satelicie naszej planety.
      Bi-Wen Wang, Qiu-Li Li i ich koledzy opisali na łamach Science wyniki badań nad materiałem przywiezionym przez Chang'e-5. Ta wystrzelona w 2020 roku misja wylądowała w północnym regionie Oceanus Procellarum, zebrała 1,7 kilograma próbek i w grudniu przywiozła je na Ziemię. Były to pierwsze próbki przywiezione bezpośrednio z Księżyca od czasu radzieckiej misji Luna 24 z 1976 roku i jednocześnie jedyne próbki z obszaru położonego tak daleko na północy.
      Wang i jego zespół przyjrzeli się około 3000 miniaturowych (wielkości od 20 do 400 mikrometrów) fragmentów szkliwa, które znalazły się w przywiezionym materiale. Szkliwo takie może powstawać w wyniku uderzeń meteorytów oraz erupcji wulkanicznych. wykorzystali przy tym badania składu próbek oraz pomiary stosunku izotopów, by odróżnić od siebie oba rodzaje szkliwa. Zdecydowaną większość badanych fragmentów uznali za powstałe w wyniku olbrzymiej temperatury powstałej w trakcie uderzenia meteorytów. Jednak trzy fragmenty zostały uznane, na podstawie składu chemicznego i badań izotopów siarki, za pochodzące z aktywności wulkanicznej. Co więcej, ich skład chemiczny był bardzo podobny do składu szkła wulkanicznego zebranego przez astronautów misji Apollo.
      Jednak najważniejsze było określenie tych trzech fragmentów. Datowanie metodą uranowo-ołowiową wykazało, że maja one 123 miliony lat (±15 milionów). Dodatkowo wysoka zawartość toru i pierwiastków ziem rzadkich dodatkowo potwierdza tak niedawny wulkanizm na Księżycu.
      Wyniki badań są zaskakujące. Jeśli chińscy uczeni mają rację, oznacza to, że Księżyc był aktywny wulkanicznie niemal przez całą swoją historię. Inne dowody wskazują bowiem na wulkanizm sprzed 4,4 miliarda lat temu. Przez długi czas uważano, że procesy wulkaniczne zatrzymały się co najmniej miliard lat temu. Pojawiają się jednak sugestie, że być może procesy takie trwały jeszcze około 100 milionów lat temu.
      Teraz Chińczycy jako pierwsi donoszą o wynikach badań laboratoryjnych wskazujących, że Księżyc był aktywny jeszcze całkiem niedawno. To zaś rodzi pytanie, czy głęboko pod jego powierzchnią istnieją pierwiastki radioaktywne zdolne do wytworzenia tak dużo energii, by istniały tam komory magmowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krążący wokół Jowisza Ganimedes to największy księżyc w Układzie Słonecznym. Jest większy od najmniejszej planety, Merkurego. Na Ganimedesie znajduje się też największa w zewnętrznych częściach Układu Słonecznego struktura uderzeniowa. Planetolog Naoyuki Hirata z Uniwersytetu w Kobe przeanalizował jej centralną część i doszedł do wniosku, że w Ganimedesa uderzyła asteroida 20-krotnie większa, niż ta, która zabiła dinozaury. W wyniku uderzenia oś księżyca uległa znaczącej zmianie.
      Ganimedes, podobnie jak Księżyc, znajduje się w obrocie synchronicznym względem swojej planety. To oznacza, że jest do niej zwrócony zawsze tą samą stroną. Na znacznej części jego powierzchni widoczne są ślady tworzące kręgi wokół konkretnego miejsca. W latach 80. naukowcy doszli do wniosku, że to dowód na dużą kolizję. Wiemy, że powstały one w wyniku uderzenia asteroidy przed 4 miliardami lat, ale nie byliśmy pewni, jak poważne było to zderzenie i jaki miało wpływ na księżyc, mówi Naoyjuki Hirata.
      Japoński uczony jako pierwszy zwrócił uwagę, że miejsce uderzenia wypada niemal idealnie na najdalszym od Jowisza południku Ganimedesa. Z badan Plutona przeprowadzonych przez sondę New Horizons wiemy, że uderzenie w tym miejscu doprowadziło do zmiany orientacji osi planety, więc tak samo mogło stać się w przypadku Ganimedesa. Hirata specjalizuje się w symulowaniu skutków uderzeń w księżyce i satelity, wiedział więc, jak przeprowadzić odpowiednie obliczenia.
      Na łamach Scientific Reports naukowiec poinformował, że asteroida, która uderzyła w Ganimedesa, miała prawdopodobnie średnicę około 300 kilometrów i utworzyła krater przejściowy o średnicy 1400–1600 kilometrów. Krater przejściowy to krater uderzeniowy istniejący przed powstaniem krateru właściwego, czyli misy wypełnionej materiałem powstałym po uderzeniu. Z przeprowadzonych obliczeń wynika, że tylko tak duża asteroida mogła przemieścić wystarczającą ilość masy, by doszło do przesunięcia osi Ganimedesa na jej obecną pozycję.
      Przypomnijmy, że 14 kwietnia ubiegłego roku wystartowała misja Juice (Jupiter Icy Moons Explorer) Europejskiej Agencji Kosmicznej. Ma ona zbadać trzy księżyce Jowisza: Kallisto, Europę i Ganimedesa. Na jej pokładzie znalazły się polskie urządzenia, wysięgniki firmy Astronika, na których zamontowano sondy do pomiarów plazmy. Wszystkie trzy księżyce posiadają zamarznięte oceany. To najbardziej prawdopodobne miejsca występowania pozaziemskiego życia w Układzie Słonecznym. W lipcu 2031 roku Juice ma wejść na orbitę Jowisza, a w grudniu 2034 roku znajdzie się na orbicie Ganimedesa i będzie badała ten księżyc do września 2035 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      We wrześniu 2022 roku NASA przeprowadziła pierwszy w historii, i od razu udany, test obrony Ziemi przed asteroidami. W ramach misji DART niewielki pojazd uderzył w asteroidę Dimorphos i zmienił jej orbitę wokół asteroidy Didymos. Od tamtego czasu naukowcy badają obie asteroidy oraz skutki testu. Na łamach Nature Communications ukazało się właśnie 5 interesujących artykułów na temat Dimorphos i Didymos.
      Dzięki obrazom przekazanym przed zderzeniem przez DART i towarzyszący mu pojazd LICIACube naukowcy z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa mogli przeanalizować geologię obu asteroid. Olivier Barnouin i Ronald-Louis Ballouz stwierdzili, że mniejsza Dimorphos była pokryta głazami o różnych rozmiarach, natomiast Didymos jest bardziej gładka na mniejszych szerokościach i kamienista na większych, ma też więcej kraterów. Obaj autorzy uważają, że Dimorphos pochodzi od Didymos, od której się oderwała. Istnieją bowiem naturalne procesy, które przyspieszają obrót niewielkich asteroid. Mogą one być o odpowiedzialne za nadawanie im kształtu i odrywanie się materiału z ich powierzchni. Barnouin i Ballouz uważają, że powierzchnia Didymos ukształtowała się 12,5 miliona lat temu, a Dimorphos zyskała swój obecny kształt przed mniej niż 300 000 lat.
      Autorami kolejnej pracy są Maurizio Pajola z włoskiego Narodowego Instytutu Astrofizyki (INAF) i jego międzynarodowy zespół naukowy. Tutaj porównano kształt, rozmiary oraz rozkład głazów na powierzchni obu asteroid. Badacze stwierdzli, że Dimorphos formowała się etapami, prawdopodobnie z materiału pochodzącego z Didymos. Wyniki takie potwierdzają dominującą teorię, która mówi, że niektóre układy podwójne asteroid powstają w wyniku kumulowania się materiału z większej asteroidy na mniejszej, która staje się jej księżycem.
      Analizy zmęczenia cieplnego – stopniowego osłabiania i pękania materiału powodowanego przez zmiany temperatury – podjęła się Alice Lucchetti z INAF. Wraz z zespołem stwierdziła, że w wyniku takiego procesu tempo pękania powierzchni Dimorphos i oddzielania się od niej głazów może zachodzić znacznie szybciej, niż dotychczas sądzono.
      Naomi Murdoch z Uniwersytetu w Tuluzie oceniła nośność gruntu Didymos i stwierdziła, że jest ona co najmniej 1000-krotnie mniejsza niż suchego piasku czy gruntu na Księżycu. To bardzo ważny parametr, który pozwala nam zrozumieć i przewidzieć reakcję powierzchni na, na przykład, uderzenie pojazdu, który ma zmienić orbitę asteroidy.
      Autorem ostatniego z opublikowanych badań jest kolega Murdoch z uczelni, Colas Robin. Wraz z zespołem analizował on głazy znajdujące się na powierzchni Dimorphos i porównywał je z głazami z asteroid Itokawa, Ryugu oraz Bennu. Naukowcy zauważyli podobieństwa sugerujące, że wszystkie te asteroidy powstały i ewoluowały w podobny sposób.
      Wspomniane badania pozwalają nam lepiej zrozumieć pochodzenie, ewolucję i budowę Didymos i Dimorphos. Możemy też dowiedzieć się z nich, dlaczego misja DART okazała się tak wielkim sukcesem. Wiedza ta przyda się już wkrótce. Jeszcze w bieżącym roku wystartuje misja Hera Europejskiej Agencji Kosmicznej, która poleci do układu Didymos-Dimorphos. W 2026 roku wejdzie ona na orbitę asteroid i będzie je szczegółowo badała, uwzględniają przy tym wpływ misji DART.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzisiaj o godzinie 16:19 czasu polskiego ma wystartować misja Psyche. Jej celem jest wyjątkowy obiekt – największa w Układzie Słonecznym metaliczna asteroida Psyche. Znajduje się ona w głównym pasie planetoid, a wystrzelony pojazd będzie musiał przebyć 3,5 miliarda kilometrów zanim do niej dotrze. Dotychczas wysłane przez ludzi pojazdy odwiedzały obiekty zbudowane ze skał czy lodu. NASA wysyła zaś satelitę do asteroidy o wysokiej zawartości żelaza. W przeszłości Psyche mogła być jądrem planetozymalu, zalążka planety. Może być też pozostałością po obiekcie nieznanego obecnie typu, który był bogaty w żelazo i formował się gdzieś w Układzie Słonecznym.
      Badania Psyche – jeśli rzeczywiście jest to jądro planetozymalu – mogą pokazać, jak wygląda jądro Ziemi lub innych podobnych planet. Z tego punktu widzenia misję można uznać za wyprawę do wnętrza Ziemi. Nie jesteśmy w stanie bezpośrednio obserwować ziemskiego jądra. Psyche może dać nam taką możliwość i stanowić jedyną w swoim rodzaju okazję do badania początków planet typu ziemskiego.
      Psyche ma nieregularny kształt, jeśli wyobrazimy sobie ją jako owal, to wymiary asteroidy wyniosą 280x232 kilometry. Powierzchnia asteroidy wynosi 165 800 km2, czyli ponad połowę powierzchni Polski. Asteroida jest bardzo gęsta. Jej metr sześcienny ma masę 3400–4100 kilogramów. Odległość planetoidy od Ziemi waha się od 300 do 600 milionów kilometrów. Dla porównania warto pamiętać, że średnia odległość Ziemi od Słońca to 150 milionów kilometrów.
      Dotychczasowe badania, dokonywanie za pomocą radarów i mierzenia inercji termalnej wskazują, że Psyche to połączenie skał i metalu, a metal stanowi od 30 do 60 procent objętości asteroidy. Obserwacje radarowe i za pomocą teleskopów optycznych pozwoliły naukowcom na stworzenie trójwymiarowego modelu asteroidy. Wynika z niego, że znajdują się na niej dwa obniżenia podobne do kraterów, a na powierzchni występują znaczne różnice w kolorze i zawartości metalu. Dopóki jednak ludzkość nie wyśle na Psyche sondy, nie może być pewna, jak asteroida w rzeczywistości wygląda.
      Pojazd Psyche ma wielkość półciężarówki. Dotrze do celu w lipcu 2029 roku i przez 2 lata będzie krążył wokół asteroidy, prowadząc badania. Wyposażono go w kamerę multispektralną, która wykona zdjęcia zarówno w paśmie widzialnym, jak i w podczerwieni. Spektrometr rentgenowski i neutronowy pozwoli na badanie składu powierzchni asteroidy, a za pomocą magnetometru można będzie zmierzyć jej pole magnetyczne. Skaliste planety, takiej jak Ziemia, generują pole magnetyczne w płynnych metalicznych jądrach. Niewielkie zamrożone obiekty, jak asteroidy. Nie mają pola magnetycznego. Jeśli zaś magnetometr wykryje na Psyche pozostałości pola magnetycznego, będzie to silnym potwierdzeniem hipotezy, że asteroida to pozostałość jądra formującej się planety. Naukowcy liczą też na to, że na Psyche znajdą ślady ferrowulkanizmu. To nigdy nie obserwowane zjawisko, polegające na erupcji płynnego żelaza, do której dochodziło, gdy stygł odłupany od planety fragment jądra.
      Przy okazji misji Psyche NASA przetestuje system kosmicznej komunikacji laserowej (DSOC – Deep Space Optical Communications). Obecnie kontakt z pojazdami pracującymi poza Ziemią zapewniają fale radiowe. Mają one częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja danych za pośrednictwem laserów byłaby nawet 100-krotnie szybsza niż za pomocą fal radiowych. Ponadto laserowe systemy komunikacji są znacznie mniejsze i lżejsze, niż systemy komunikacji radiowej, co ma olbrzymie znaczenie podczas misji w kosmosie. Psyche nie będzie polegała na DSOC, a na standardowej komunikacji radiowej. Jeśli jednak testy systemu laserowego wypadną pomyślnie, będzie może zacząć stosować lasery w misjach kosmicznych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...