Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wyjątkowo rzadka obserwacja „tenisowych” drgań ołowiu

Rekomendowane odpowiedzi

Po zderzeniu z rakietą czy ścianą piłka tenisowa wykonuje kilka szybkich oscylacji, spłaszczając się i wydłużając wzdłuż kierunku ruchu. W Instytucie Fizyki Jądrowej PAN poprzez pomiar kwantów gamma zarejestrowano ślady podobnych drgań zachodzących w jądrach ołowiu 208Pb wzbudzonych zderzeniami z protonami. Jedyna wcześniejsza obserwacja analogicznego zjawiska liczy ponad trzydzieści lat.

Wśród szumów i zakłóceń kwantowego świata fizycy w Krakowie wytropili zjawisko wcześniej zaobserwowane tylko raz, na dodatek ponad trzy dekady temu. W serii wyrafinowanych pomiarów zebrali dane potwierdzające występowanie w jądrach atomów ołowiu 208Pb oscylacji polegających na spłaszczaniu się i wydłużaniu powierzchni jądra wzdłuż ustalonego kierunku. Unikatowy eksperyment, opisany na łamach czasopisma Physical Review C, przeprowadzono w Centrum Cyklotronowym Bronowice, będącym częścią krakowskiego Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN).

Możliwość obserwowania w naszym ośrodku subtelnych oscylacji jąder ołowiu 208Pb wynika ze specyficznych cech tutejszego akceleratora Proteus C-235. Głównym zadaniem urządzenia jest bowiem napromieniowanie nowotworów, w tym nowotworów oka. Jedną z czterech linii akceleratora zaprojektowano jednak z myślą o badaniach fizycznych. Unikalność akceleratora wynika z zakresu energii dostarczanych przez niego protonów. Na świecie niemal wszystkie akceleratory dostępne dla fizyków nadają protonom energie albo wyraźnie mniejsze, albo wyraźnie większe niż nasz - wyjaśnia prof. dr hab. Adam Maj (IFJ PAN).

W cyklotronie Proteus protony mogą osiągać energie od 70 do 230 megaelektronowoltów (dla porównania: energia protonów w akceleratorze LHC bywa nawet setki tysięcy razy większa). Wzbudzone zderzeniem z protonem, jądro ołowiu może się rozpaść na cząstki wtórne lub przejść do niższego stanu energetycznego, co jest połączone z emisją kwantu promieniowania gamma. Oba przypadki zasadniczo się różnią: energie cząstek wtórnych mogą być praktycznie dowolne, podczas gdy energie kwantów gamma muszą odpowiadać różnicom między konkretnymi stanami energetycznymi jądra. Wszystko to oznacza, że to właśnie kwanty gamma niosą najcenniejszą informację o budowie jądra atomowego.

Nasz międzynarodowy zespół specjalizuje się w obserwacjach rozpadów z emisją kwantów gamma szczególnych wzbudzeń jądra, znanych jako gigantyczne rezonanse - mówi dr hab. Maria Kmiecik (IFJ PAN), po czym precyzuje: Dotychczas badaliśmy rozpady takich rezonansów w jądrach 'gorących', czyli wzbudzonych do wysokich energii. Jednak obecnie, dzięki odpowiedniemu doborowi warunków eksperymentu i układu pomiarowego, układowi detektorów gamma o wysokich energiach HECTOR z Uniwersytetu Mediolańskiego oraz zbudowanemu w Krakowie matrycowemu detektorowi rozproszonych protonów KRATTA, zdołaliśmy zobaczyć rozpady gamma rezonansów w jądrach 'zimnych', czyli wzbudzone na stanach podstawowych. Co jednak szczególnie istotne, udało się nam też zauważyć oscylacje jądra jako całości, będące efektem gigantycznego rezonansu kwadrupolowego.

Gdy pojedynczy proton o odpowiednio dobranej energii zderzy się z kulistym jądrem ołowiu 208Pb w tarczy, może je pobudzić do różnych oscylacji, zwłaszcza tych powiązanych z gigantycznymi rezonansami. Fizycy używają przymiotnika „gigantyczny”, by podkreślić, że rezonanse tego typu pojawiają się znacznie częściej od innych.

Gigantyczne rezonanse występują w dwóch podstawowych odmianach. W przypadku gigantycznego rezonansu dipolowego (GDR) protony i neutrony w jądrze oscylują względem siebie. Jako całość powierzchnia jądra nie zmienia wtedy kształtu, jedynie wpada w wibracje. Dla odmiany rezonans kwadrupolowy (GQR) przejawia się pod postacią deformacji całej powierzchni jądra, które zaczyna naprzemiennie się spłaszczać i wydłużać wzdłuż pewnego kierunku. Zjawisko przypomina zniekształcenia piłeczki tenisowej lub golfowej tuż po odbiciu od rakiety bądź kija, przez chwilę ściskającej się i rozciągającej wzdłuż kierunku odbicia.

Detekcja kwantów gamma emitowanych przez wzbudzone jądra ołowiu 208Pb nie należy do zadań prostych. W przypadku dużo łatwiejszego do wzbudzenia gigantycznego rezonansu dipolowego, rozpad z emisją gamma zdarza się mniej więcej sto razy rzadziej niż standardowo obserwowane rozpady przez cząstki. W przypadku rezonansu kwadrupolowego prawdopodobieństwo emisji kwantu gamma spada kolejne sto razy, przy czym obserwacje utrudnia fakt, że zjawisko to występuje na tle swojego prostszego kuzyna - przedstawia skalę trudności dr Barbara Wasilewska, dla której omawiane badania były tematem rozprawy doktorskiej w IFJ PAN.

Rezultaty otrzymane przez fizyków w Krakowie za pomocą dokładniejszej aparatury znakomicie współgrają z wynikami eksperymentu sprzed kilkudziesięciu lat, a jednocześnie niosą nową, jakościowo istotną informację. Naukowcy, którzy dawniej zarejestrowali wzbudzenie i rozpad gamma gigantycznego rezonansu kwadrupolowego, przeprowadzali swoje pomiary, bombardując ołowiane tarcze za pomocą ciężkich jonów. Tymczasem obecny wynik jednoznacznie wskazuje, że do wprawienia w oscylacje powierzchni ciężkich jąder atomowych można używać nawet znacznie lżejszych protonów.

Choć wymagająca od strony technicznej i teoretycznej, obserwacja drgań związanych z deformacjami powierzchni jąder ołowiu 208Pb została zrealizowana jako swoista rozgrzewka, wstęp do długiego ciągu bardziej wyrafinowanych eksperymentów dotyczących podobnych zjawisk w innych jądrach atomowych. Zespół pracujący w ośrodku cyklotronowym w Bronowicach rozpoczął już kolejne pomiary, z jeszcze bardziej ulepszoną aparaturą: układ do pomiaru kwantów gamma zastąpiono układem detektorów nowej generacji PARIS. Szczególne zainteresowanie naukowców budzą rezonanse znane jako pigmejskie oraz oscylacje jąder atomowych o kształtach niesferycznych, których oscylacje wciąż umykają przewidywaniom teoretyków.

Badania zrealizowano z europejskich grantów programu Horizon 2020 (IDEAAL i ENSAR2) przy wsparciu grantu Narodowego Centrum Nauki.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Ben-Guriona oraz Instytutu Weizmanna poinformowali o opracowaniu techniki podsłuchu z... drgań żarówki znajdującej się w pokoju, w której prowadzona jest rozmowa. Wywołane dźwiękiem zmiany ciśnienia powietrza na powierzchni wiszącej żarówki powodują jej niewielkie drgania, które można wykorzystać do podsłuchu w czasie rzeczywistym, stwierdzili naukowcy. Metoda została opisana w najnowszym numerze Science i zostanie zaprezentowana podczas wirtualnej konferencji Black Hat USA 2020, która odbędzie się w sierpniu.
      Podobne metody podsłuchu były już opisywane. Jednak wiele takich metod albo nie działa w czasie rzeczywistym, albo nie jest pasywnych, co oznacza, że konieczne jest wykorzystanie np. światła lasera, które może nas zdradzić. Metoda „lamphone” jest i pasywna i działa w czasie rzeczywistym.
      Ben Nassi i jego koledzy prowadzili swoje eksperymenty za pomocą teleskopów (o średnicach luster 10, 20 i 35 centymetrów), które umieścili w odległości 25 metrów od „podsłuchiwanej” żarówki. W zestawie do podsłuchu znalazł się jeszcze elektrooptyczny czujnik Thorlabs PDA100A2, a celem była 12-watowa żarówka LED.
      Żarówka wibrowała w reakcji na dźwięki w pomieszczeniu. Wibracje te znajdowały swoje odzwierciedlenie w zmianach sygnału świetlnego rejestrowanego przez czujnik umieszczony przy okularze teleskopu. Zbierane sygnały zmieniane są z analogowych na cyfrowe, a następnie przetwarzane przez oprogramowanie odfiltrowujące szumy. Jest ono wspomagane przez Google Cloud Speech API rozpoznające ludzką mowę oraz aplikacje takie jak Shazam czy SoundHound, których zadaniem jest rozpoznawanie utworów muzycznych.
      Podczas swoich eksperymentów naukowcy byli w stanie zebrać różne dźwięki w podsłuchiwanego pomieszczenia, w tym rozpoznać piosenki Let it Be Beatlesów czy Clocks Coldplay oraz przemówienie prezydenta Trumpa We will make America great again.
      Autorzy nowej techniki podsłuchu mówią, że sprawdzi się ona na odległość większą niż 25 metrów. Należy użyć większego teleskopu lub innego konwertera analogowo-cyfrowego.
      Przeciwdziałać podsłuchowi można przyciemniając światło, gdyż metoda ta tym słabiej działa im mniej światła przechwytuje czujnik, lub używając cięższej żarówki, która mniej drga pod wpływem dźwięku.
      Zaprezentowany przez Izraelczyków sposób podsłuchu ma sporo ograniczeń. Przede wszystkim teleskop musi widzieć bezpośrednio światło emitowane z żarówki. Można więc zgasić światło czy zaciągnąć kotary. Jednak mimo tych niedoskonałości powyższa praca pokazuje, że z jednej strony warto rozważyć możliwość wykorzystania różnych źródeł światła w technikach podsłuchowych, z drugiej zaś warto zastanowić się, w jaki sposób można przed takim podsłuchem się chronić.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba (JWST) pomyślnie przeszedł kolejną serię testów. Tym razem były to testy wibracji akustycznych oraz wymuszeń sinusoidalnych. Miały one na celu sprawdzenie, czy teleskop jest w stanie przetrwać start rakiety, która wyniesie go w przestrzeń kosmiczną.
      W czasie testów Webb był poddawany dźwiękom emitowanym przez potężne głośniki, a następnie umieszczony na specjalnym stole do generowania wibracji elektrodynamicznych.
      Wibracje, jakim będzie poddawany Webb podczas startu są podobne do tego, co doświadcza samolot w czasie turbulencji. W czasie startu środowisko akustyczne generuje dźwięk o 10-krotnie większym ciśnieni, jest on 100-krotnie bardziej intensywny i 4-krotnie głośniejszy niż koncert rockowy, mówi Paul Geithner, jeden z menedżerów odpowiedzialnych za kwestie techniczne.
      Ostatniej serii testów została poddany pojazd, który będzie niósł Teleskop oraz osłony, chroniące instrument przed wpływem Słońca. Wiosną ubiegłego roku podczas wstępnych testów akustycznych odkryto problem w osłonie. Wymagało to wielomiesięcznych poprawek. Najnowszy test okazał się pełnym sukcesem. Następnie całość przetransportowano do cleanroomu, gdzie przeprowadzono test wymuszeń sinusoidalnych. Teraz wspomniane elementy są przygotowywane do testów termicznych. Mają one sprawdzić, jak będą się sprawowały w próżni i przy niskich temperaturach.
      Pozostałe elementy JWST, czyli sam teleskop i inne instrumenty już wcześniej przeszły pomyślne testy akustyczne, wymuszeń sinusoidalnych oraz kriogeniczne.
      Po zakończeniu obecnie prowadzonych testów pojazd i osłona termiczna przejdą jeszcze test gotowości do pracy, w czasie którego całość będzie musiała rozwinąć się z pozycji, w jakiej zostanie umieszczona na rakiecie nośnej do pozycji gotowości do pracy w przestrzeni kosmicznej. Po tym teście wszystkie części JWST zostaną złożone i czeka je kolejna seria testów i przeglądów, tym razem już w całości.
      Obecnie NASA przewiduje, że Teleskop Kosmiczny Jamesa Webba zostanie wystrzelony 30 marca 2021 roku.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naturalne drgania samochodu sprawiają, że ludzie stają się coraz bardziej senni. Wpływa to na koncentrację i czujność już po kwadransie za kierownicą.
      Zważywszy, że ok. 20% śmiertelnych wypadków ma związek ze zmęczeniem kierowcy, naukowcy z RMIT University w Melbourne liczą, że ich wyniki zostaną wykorzystane przez producentów samochodów do opracowania foteli wspomagających czujność.
      Prof. Stephen Robinson podkreśla, że dotąd nie rozumiano dokładnie wpływu drgań na kierowców (coraz więcej dowodów wskazywało jednak, że wibracje przyczyniają się do senności).
      Odkryliśmy, że delikatne drgania fotela podczas jazdy usypiają mózg i ciało. Nasze badanie pokazuje, że stałe wibracje o niskiej częstotliwości, czyli takie, jakich doświadczamy, prowadząc samochód czy ciężarówkę, stopniowo powodują senność nawet u osób, które są wypoczęte i zdrowe. Po 15 min [...] senność zaczyna działać. Po 30 min ma już znaczący wpływ na zdolność zachowania koncentracji i czujności.
      W eksperymentach Robinsona i prof. Mohammada Farda wzięło udział 15 ochotników. Przechodzili oni symulację monotonnej jazdy po 2-pasmowej autostradzie. Symulator ustawiano na platformie, która może drgać z różną częstotliwością. Badani przechodzili 2 testy. Raz częstotliwość drgań była niska (4-7 Hz), a raz drgań w ogóle nie było.
      Zmęczenie wywoływane przez drgania psychologicznie i fizjologicznie utrudnia wykonanie zadań, dlatego układ nerwowy musi to kompensować (pojawiają się np. zmiany tętna). Badając zmienność rytmu zatokowego (ang. heart rate variability, HRV), naukowcy mogli więc obiektywnie zmierzyć, jak bardzo ktoś czuł się senny w danym momencie godzinnego testu.
      Okazało się, że objawy senności pojawiają się w ciągu kwadransa. Po 30 min senność jest już znacząca (trzeba sporego wysiłku, by podtrzymać czujność i formę poznawczą). Zmęczenie narasta przez godzinę, osiągając szczyt po 60 min.
      Fard podkreśla, że dzięki większej próbie w przyszłości powinno się udać określić, jak wiek może wpływać na czyjąś podatność na senność wywołaną drganiami. Interesują nas też potencjalne oddziaływania problemów zdrowotnych, np. bezdechu sennego.
      Nasze badania sugerują także, że drgania w pewnych częstotliwościach mają odwrotne działanie i mogą podtrzymywać czujność. Chcemy więc przetestować większy zakres częstotliwości [...].

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...