Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Andromeda – szybka łączność bezprzewodowa i GPS na całym Księżycu

Recommended Posts

Od kilku lat Księżyc cieszy się dużym zainteresowaniem agencji kosmicznych i firm prywatnych. Planowane są misje załogowe i bezzałogowe na Srebrny Glob. Jednym z najbardziej ambitnych projektów jest zbudowanie na orbicie Księżyca stacji Lunar Gateway, w której przechowywane będą zapasy, urządzenia i roboty, będzie służyła jako baza dla astronautów i zapewniała łączność z Ziemią.

Do roku 2030 różne firmy i organizacje planują ponad 90 misji związanych z Księżycem. I nawet jeśli jakaś część z nich nie dojdzie do skutku, to inne – być może większość – się odbędą. A to dopiero początek. Zainteresowanie Księżycem będzie rosło. Być może w przyszłości powstanie na nim stała baza.

Wszystkie te misje oraz potencjalna baza będą potrzebowały łączności z Ziemią. A jej zapewnienie to niełatwe zadanie. Już w czasie misji Apollo były problemy z komunikacją pomiędzy Srebrnym Globem a planetą. A gdy misji będzie więcej i będą się one odbywały w różnych miejscach Księżyca, problemy będą jeszcze większe. Niemożliwe jest bowiem zapewnienie bezpośredniej łączności zarówno ze stroną Księżyca niewidoczną z Ziemi, jak i z dużych obszarów podbiegunowych. Nawet na widocznej z Ziemi stronie łączność mogą zakłócać nierówności terenu. Trzeba też pamiętać, że oba ciała niebieskie dzieli kilkaset tysięcy kilometrów, zatem do zapewnienia łączności trzeba silnych nadajników i dużych anten oraz wzmacniaczy. Pracujące na Księżycu niewielkie roboty z pewnością nie będą miały ani odpowiednich urządzeń, ani wystarczająco dużo energii, by komunikować się z Ziemią.

Dlatego też włoska firma Argotec oraz należące do NASA Jest Propulsion Laboratory (JPL) pracują nad Andromedą. Ma to być konstelacja 24 satelitów krążący po 6 orbitach wokół Srebrnego Globu. Satelity służyłyby do przekazywania sygnałów radiowych pomiędzy Ziemią a Księżycem, zapewniając nieprzerwaną łączność na biegunach i niemal nieprzerwaną wszędzie indziej. Włoska firma opracowuje koncepcję satelity, a JPL ma dostarczyć podsystemy, takie jak nadajniki czy anteny.

Zadanie tylko z pozoru jest proste. Satelity powinny bowiem znaleźć się na stabilnych orbitach, czyli takich, które nie będą wymagało od nich manewrowania. Po drugie, orbity należy dobrać tak, by zapewnić jak najlepszą łączność obszarom, na którym prawdopodobnie będzie prowadzona najbardziej intensywna działalność. Po trzecie zaś, zapewniając łączność tym obszarom, nie należy zapomnieć o pozostałej części powierzchni Księżyca.

Zaproponowana obecnie przez Argotec koncepcja zakłada, że satelity będą znajdowały się na stabilnych orbitach, na których będą mogły pracować przez co najmniej 5 lat. Każdy z nich będzie krążył po eliptycznej orbicie o czasie obiegu 12 godzin. Orbity będą przebiegały w odległości 720 km od powierzchni Księżyca w punkcie najbliższym (perycentrum) i 8090 km w punkcie najdalszym (apocentrum). Jako, że satelita podróżuje najwolniej gdy jest w apocentrum, orbity zostaną ustawione tak, by ich apocentrum przebiegało nad najbardziej interesującym punktami Księżyca, co zapewni najdłuższy okres nieprzerwanej łączności.

Dzięki dobrze dobranym orbitom nad każdym z biegunów Księżyca zawsze będzie znajdował się jakiś satelita, a przez 94% czasu będą to trzy satelity. Z kolei nad równikiem co najmniej jeden satelita będzie przez 89% czasu, a trzy satelity przez 79%. Jako, że nawet w apocetrum satelita będzie znajdował się w odległości mniejszej niż 10 000 km od powierzchni, zapewni łączność również niewielkim urządzeniom, nie posiadającym dużych anten i nadajników. Co więcej, dzięki satelitom możliwa będzie komunikacja w czasie rzeczywistym pomiędzy ludźmi pracującymi w dwóch oddalonych lokalizacjach. Jakby jeszcze tego było mało, satelity będą działały jak księżycowy GPS, zapewniając dane lokalizacyjne ludziom i urządzeniom na Srebrnym Globie.

Andromeda musi być bardzo wydajna. Efektywna komunikacja głosowa czy przesyłanie materiałów wideo w wysokiej rozdzielczości będą wymagały prędkości transmisji rzędu megabitów na sekundę. Tym bardziej biorąc pod uwagę liczbę planowanych misji.

Jednak to nie wszystko. NASA chce umieścić na niewidocznej z Ziemi stronie Księżyca radioteleskop. Agencja pracuje obecnie nad dwiema koncepcjami. Pierwsza z nich – LCRT – zakłada zbudowanie w księżycowym kraterze największego w Układzie Słonecznym radioteleskopu o średnicy 1 km. Zbudowany przez roboty teleskop mógłby prowadzić obserwacje niedostępne z Ziemi, gdyż byłby wolny zarówno od zakłóceń powodowanych przez człowieka, zakłóceń jonosfery czy satelitów. Druga zaś rozważana koncepcja – FARSIDE – zakłada wybudowanie 128 anten. Byłyby one ustawione w okręgu o średnicy 10 km i połączone kablami ze stacją centralną.

Informacje z takich teleskopów również byłyby przekazywane przed Andromedę. A na Ziemi wszystkie te dane trzeba by było odebrać. Przykładem systemu odbiorczego może być należący do NASA DSN (Deep Space Network). To zespół anten znajdujących się w USA, Australii i Hiszpanii, które służą komunikacji z misjami w dalszych partiach przestrzeni kosmicznej. DNS już teraz obsługuje wiele misji, a kolejne są planowane. Dlatego też Andromeda raczej nie będzie mogła skorzystać z DSN. Potrzebny będzie osobny system odbiorczy na Ziemi.


« powrót do artykułu

Share this post


Link to post
Share on other sites
Godzinę temu, KopalniaWiedzy.pl napisał:

Planowane są misje załogowe i bezzałogowe na Srebrny Glob. Jednym z najbardziej ambitnych projektów jest zbudowanie na orbicie Księżyca stacji Lunar Gateway, w której przechowywane będą zapasy, urządzenia i roboty, będzie służyła jako baza dla astronautów i zapewniała łączność z Ziemią.

Pięknie, ale. Jak JA zbuduję bazę, to inni mogą mi tylko płacić za korzystanie z zasobów, bo inaczej... ;) (tu oczywiście zrozumiała jest współpraca z amią).

Godzinę temu, KopalniaWiedzy.pl napisał:

Dlatego też włoska firma Argotec oraz należące do NASA Jest Propulsion Laboratory

Wygląda mi cokolwiek astronomicznie. Włochy i USA? Chyba jakiś generał na drugim kontynencie nie zdążył zgolić włochów... :ph34r:

Godzinę temu, KopalniaWiedzy.pl napisał:

Zaproponowana obecnie przez Argotec koncepcja zakłada, że satelity będą znajdowały się na stabilnych orbitach, na których będą mogły pracować przez co najmniej 5 lat.

No i niech podatnik się nie zdziwi. :)

Godzinę temu, KopalniaWiedzy.pl napisał:

Co więcej, dzięki satelitom możliwa będzie komunikacja w czasie rzeczywistym pomiędzy ludźmi pracującymi w dwóch oddalonych lokalizacjach.

Pięknie. Zobaczymy jak w praktyce. :)

Godzinę temu, KopalniaWiedzy.pl napisał:

Zbudowany przez roboty teleskop

Lubię NASA, ale chłopaki i dziewczęta naprawdę za dużo palą... :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Nowe badania dostarczyły najsilniejszych jak dotychczas dowodów, że ziemskie kontynenty uformowały się w wyniku gigantycznych uderzeń meteorytów, do których dochodziło przede wszystkim w ciągu pierwszego miliarda lat istnienia Ziemi.
      Ziemia jest jedyną znaną nam planetą posiadającą kontynenty. Nie wiemy jednak, jak doszło do ich powstania. Od kilkudziesięciu lat znana jest hipoteza mówiąca, że kontynenty powstały w wyniku gigantycznych uderzeń meteorytów. Dotychczas jednak brakowało mocnych dowodów na jej poparcie.
      Doktor Tim Johnson i jego zespół z australijskiego Curtin University opublikowali na łamach Nature artykuł Giant impacts and the origin and evolution of continents, w którym opisują zdobyte przez siebie dowody na rolę meteorytów w formowaniu się kontynentów.
      Naukowcy przeprowadzili badania izotopów tlenu w kryształach cyrkonu znajdujących się w skałach magmowych kratonu [to stara niepodlegająca już fragmentacji część skorupy ziemskiej – red.] Pilbara w zachodniej Australii. Kraton ten uformował się 3,6 miliarda lat temu i obok kratonu Kaapvaal na południu Afryki jest najstarszym zachowanym fragmentem skorupy Ziemi. Badanie izotopów tlenu w kryształach cyrkonu pokazało, że doszło do odwróconego procesu topienia się skał, który rozpoczął się wyżej i postępował w dół. Takie zjawisko jest zgodne z wynikiem uderzenia wielkiego meteorytu, mówi uczony.
      Naukowcy wyróżnili co najmniej trzy etapy tworzenia się kratonu Pilbara. Izotopy tlenu w cyrkonie sprzed ok. 3,6 miliarda lat wskazują na rozpoczęcie procesu masowego topnienia skał. Doszło do niego w wyniku wielkich uderzeń meteorytów, które doprowadziły do popękania skorupy ziemskiej i rozpoczęcia długotrwałej aktywności geotermalnej w wyniku interakcji z globalnym oceanem.
      Drugi etap związany jest z cyrkonem sprzed 3,4 miliarda lat, który jest współczesny najstarszym znanym sferulom, czyli drobnym kulkom szkliwa powstałym w wyniku uderzenia meteorytu w skały. Cyrkony etapu trzeciego są zaś wynikiem recyklingu skał suprakrustalnych.
      Przeprowadzone przez nas badania dostarczają pierwszych mocnych dowodów, że proces, który doprowadził do utworzenia się kontynentów, rozpoczął się od gigantycznych uderzeń meteorytów. Uderzenia te były podobne do tego, które zabiło dinozaury, ale miały miejsce miliardy lat wcześniej, mówi Johnson. Naukowiec dodaje, że zrozumienie tworzenia się i ewolucji kontynentów jest niezwykle ważne, gdyż to na lądach istnieje większość ziemskiej biomasy i ważnych minerałów. Istnienie tych minerałów to wynik procesu dyferencjacji skorupy ziemskiej, który rozpoczął się wraz z tworzeniem się pierwszych mas lądowych, a kraton Pilbara jest tylko jednym z nich, dodaje.
      Teraz Johnson i jego zespół chcą zbadać, czy w innych starych skałach na Ziemi zauważą podobny schemat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Intensywność pola magnetycznego Ziemi zmniejsza się od około 200 lat. Proces ten przebiega na tyle szybko, że niektórzy naukowcy ogłosili, iż w ciągu 2000 lat dojdzie do zamiany biegunów magnetycznych. Przebiegunowanie mogłoby spowodować, że przez kilka tysięcy lat Ziemia byłaby gorzej chroniona przed szkodliwym promieniowaniem kosmicznym i słonecznym. To z kolei doprowadziłoby do poważnych zakłóceń i awarii sprzętu elektronicznego, wzrostu przypadków zachorowań na nowotwory i zwiększenia się liczby mutacji genetycznych. Niewykluczone, że ucierpiałyby też te gatunki zwierząt, które w swoich migracjach orientują się wedle pola magnetycznego.
      Naukowcy z MIT-u opublikowali na łamach PNAS artykuł opisujący wyniki ich badań nad stanem pola magnetycznego planety. Ich zdaniem przebiegunowanie nie grozi nam w najbliższym czasie. Uczeni obliczyli średnią intensywność stabilnego ziemskiego pola magnetycznego na przestrzeni ostatnich 5 milionów lat i odkryli, że obecnie pole to jest dwukrotnie bardziej intensywne niż średnia z tego okresu. To oznacza, że minie jeszcze sporo czasu, zanim pole magnetyczne planety stanie się niestabilne i dojdzie do przebiegunowania. To olbrzymia różnica, czy dzisiejsze pole magnetyczne jest takie jak średnia długoterminowa czy też jest powyżej średniej. Teraz wiemy, że nawet jeśli intensywność pola magnetycznego Ziemi się zmniejsza to jeszcze przez długi czas będzie się ono znajdowało w bezpiecznym zakresie - mówi Huapei Wang, główny autor badań.
      Z innych badań wiemy, że w przeszłości wielokrotnie dochodziło do przebiegunowania naszej planety. Jest to jednak proces bardzo nieregularny. Czasami przez 40 milionów lat nie było przebiegunowania, a czasem bieguny zmieniały się 10-krotnie w ciągu miliona lat. Średni czas pomiędzy przebiegunowaniami wynosi kilkaset tysięcy lat. Ostatnie przebiegunowanie miało miejsce około 780 000 lat temu, zatem średnia już została przekroczona - dodaje Wang.
      Sygnałem nadchodzącego przebiegunowania jest znaczący spadek poniżej średniej długoterminowej intensywności pola magnetycznego. To wskazuje, że stanie się ono niestabilne. Zarówno z badań terenowych jak i satelitarnych mamy dobre dane dotyczące ostatnich 200 lat. Mówiąc o przeszłości musimy opierać się na mniej pewnych szacunkach.
      Grupa Wanga zdobywała informacje o przeszłości ziemskiego pola magnetycznego badając skały wyrzucone przez wulkany na Galapagos. To idealne miejsce, gdyż wyspy położone są na równiku. Stabilne pole magnetyczne jest dipolem, jego intensywność powinna być taka sama na obu biegunach, a na równiku powinna być o połowę mniejsza. Wang stwierdził, że jeśli pozna historyczną intensywność pola magnetycznego na równiku i na biegunach uzyska dokładne dane na temat średniej historycznej intensywności. Sam zdobył próbki z Galapagos, a próbki z Antarktyki dostarczyli mu naukowcy ze Scripps Institution of Oceanography. Naukowcy najpierw zmierzyli naturalny magnetyzm skał. Następnie podgrzali je i ochłodzili w obecności pola magnetycznego i zmierzyli ich magnetyzm po ochłodzeniu. Naturalny magnetyzm skał jest proporcjonalny do pola magnetycznego, w którym stygły. Dzięki eksperymentom naukowcy byli w stanie obliczyć średnią historyczną intensywność pola magnetycznego. Wynosiła ona około 15 mikrotesli na równiku i 30 mikrotesli na biegunach. Dzisiejsza intensywność wynosi zaś, odpowiednio, 30 i 60 mikrotesli. To oznacza, że dzisiejsza intensywność jest nienormalnie wysoka i jeśli nawet ona spadnie, to będzie to spadek do długoterminowej średniej, a nie ze średniej do zera, stwierdza Wang.
      Uczony uważa, że naukowcy, którzy postulowali nadchodzące przebiegunowanie opierali się na wadliwych danych. Pochodziły one z różnych szerokości geograficznych, ale nie z równika. Dopiero Wang wziął pod uwagę dane z równika. Ponadto odkrył, że w przeszłości źle rozumiano sposób, w jaki w skałach pozostaje zapisana informacja o ziemskim magnetyzmie. Z tego też powodu przyjęto błędne założenie. Uznano, że gdy poszczególne ferromagnetyczne ziarna w skałach ulegały schłodzeniu spiny elektronów przyjmowały tę samą orientację, z której można było odczytać intensywność pola magnetycznego. Teraz wiemy, że jest to prawdą ale tylko do pewnej ograniczonej wielkości ziaren. Gdy są one większe spiny elektronów w różnych częściach ziarna przyjmują różną orientację. Wang opracował więc metodę korekty tego zjawiska i zastosował ją przy badaniach skał z Galapagos.
      Wang przyznaje, że nie wie, kiedy dojdzie do kolejnego przebiegunowania. Jeśli założymy, że utrzyma się obecny spadek, to za 1000 lat intensywność pola magnetycznego będzie odpowiadała średniej długoterminowej. Wówczas może zacząć się zwiększać. Tak naprawdę nie istnieje sposób, by przewidzieć, co się stanie. Proces magnetohydrodynamiczny ma bowiem chaotyczną naturę".

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzisiaj, 28 lipca, jest tegoroczny Dzień Długu Ekologicznego, czyli dzień, w którym ludzkość zużyła wszystkie zasoby, jakie ziemskie ekosystemy są w stanie odnowić w ciągu roku. Ziemia ma dużo zasobów, więc przez jakiś czas możemy ich ją pozbawiać, ale takie nadmierne zużycie nie może trwać wiecznie. To podobnie, jak z pieniędzmi. Przez jakiś czas możemy wydawać więcej, niż zarabiamy. Ale w końcu zbankrutujemy, mówi Mathis Wackernagel, prezydent Global Footprint Network.
      Indeks Dzień Długu Ekologicznego został stworzony przez naukowców na początku lat 90. Dzięki temu indeksowi wiemy, że ludzie zużywają obecnie tyle zasobów, że do ich odtworzenia potrzebowalibyśmy 1,75 planet takich jak Ziemia. Obliczenia przeprowadzono też dla okresu sprzed powstania wskaźnika. Pokazały one, że w bieżącym roku Dzień Długu Ekologicznego nadszedł najwcześniej w historii. Jeszcze w 1970 roku dzień ten następował 30 grudnia, zatem tempo zużywania zasobów pozwalało planecie na ich odnawianie. W roku 2018 był to już 1 sierpnia. Pandemia wyraźnie zahamowała nasze apetyty i w roku 2020 Dzień Długu Ekologicznego przypadł na 22 sierpnia. Obecnie zaś wypada najwcześniej od 1970 roku.
      Krajem, którego mieszkańcy – w przeliczeniu na głowę – zużywają najwięcej zasobów, jest Katar. Gdyby wszyscy ludzie zużywali tyle zasobów, co Katarczycy, Dzień Długu Ekologicznego miałby miejsce 10 lutego. Następny na liście jest Luksemburg (14 lutego), a później Kanada, USA i Zjednoczone Emiraty Arabskie (13 marca). Gdyby zaś każdy człowiek zużywał tyle zasobów, co przeciętny Polak, to Dzień Długu Ekologicznego przypadłby na 2 maja. Nie mamy się tutaj czym poszczycić, gdyż mieszkańcy wielu bogatszych krajów zużywają mniej zasobów. Na przykład dla Japonii dzień ten przypada 6 maja, dla Szwajcarii 13 maja, a dla Wielkiej Brytanii 19 maja.
      Według wskaźnika, większość zużywanych przez nas zasobów Ziemi (55%) wykorzystujemy na produkcję żywności, z tego zaś olbrzymia część przeznaczana jest na wyżywienie zwierząt, które później zjadamy. Na przykład w UE aż 63% ziemi ornej jest bezpośrednio powiązana z produkcją zwierzęcą. Rolnictwo przyczynia się do wylesiania, zmiany klimatu, utraty bioróżnorodności, degeneracji ekosystemów i zużywa przy tym znaczną część wody pitnej, mówią przedstawiciele Global Footprint Network. Dlatego też najprostszym i najszybszym sposobem na ograniczenie zużycia zasobów naturalnych byłoby zmniejszenie spożycia mięsa, szczególnie w bogatych krajach. Gdybyśmy jedli go o połowę mniej, to Dzień Długu Ekologicznego przypadłby o 17 dni później. Z kolei zaprzestanie marnowania żywności, a ludzkość marnuje około 33% tego, co produkuje, opóźniłoby nadejście Dnia Długu Ekologicznego o 13 dni.
      Ze szczegółami można zapoznać się na witrynie Global Foodprint Network. Umieszczono tam też kalkulator, za pomocą którego możemy sprawdzić, ilu planet byśmy potrzebowali, gdyby wszyscy ludzie zużywali tyle zasobów, co my.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Chiny planują przeprowadzenie testu obrony planetarnej. W 2026 roku chcą wystrzelić misję, w ramach której spróbują zmienić kurs asteroidy 2020 PN1. Z przedstawiony slajdów wynika, że rakieta Long March 3B wyniesie w przestrzeń kosmiczną impaktor i orbiter. Pierwsze z urządzeń uderzy w asteroidę, drugie zaś będzie obserwowało całe wydarzenie.
      Plan Chin jest podobny do misji DART wystrzelonej przez NASA w listopadzie ubiegłego roku. Już za 2 miesiące DART ma uderzyć w asteroidę Dimorphos (ok. 160 m średnicy) krążącą wokół większej asteroidy Didymos (ok. 780 m średnicy), a całe wydarzenie zarejestruje niewielki włoski satelita LICIACube, który stanowi część misji.
      Obecnie Ziemi nie zagraża żadna duża asteroida, której uderzenie mogłoby spowodować katastrofalne skutki. Specjaliści zajmujący się śledzeniem asteroid bliskich Ziemi są pewni, że tego typu niebezpieczeństwo nie będzie groziło nam przez najbliższych 100 lat. Jednak, jak widzimy, różne agencje kosmiczne już przygotowują się na taką ewentualność i pracują nad technologiami obrony naszej planety.
      Jednym z pomysłów na taką obronę jest rozbicie o powierzchnię asteroidy pojazdu, w wyniku czego asteroida – której trasa znajduje się na kursie kolizyjnym z Ziemią – lekko zmieni kurs i ominie planetę. Takie działanie musi być przeprowadzone na wiele lat przed upadkiem takiej asteroidy na Ziemię, gdyż zmiana kursu w wyniku uderzenia impaktora będzie minimalna, potrzeba zatem dużo czasu, by odchylenie od kursu na tyle się powiększyło, byśmy uniknęli niebezpieczeństwa. Na szczęście naprawdę duże asteroidy potrafimy wykryć na wiele lat zanim znajdą się w pobliżu Ziemi.
      Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Z Teleskopu Webba na Ziemię zaczęły trafiać pierwsze zdjęcia przestrzeni kosmicznej oraz dane spektroskopowe. Gdy będziemy oglądać fascynujące obrazy warto pamiętać, że pochodzą one z urządzenia, które znajduje się niemal 3000 razy dalej od Ziemi niż Teleskop Hubble'a. Warto więc dowiedzieć się, jak do nas trafiły.
      Znaczna odległość Webba od Ziemi oznacza, że sygnał musi przebyć długą drogę, zanim do nas trafi, a cały system komunikacyjny musi działać naprawdę dobrze, gdyż nie przewiduje się misji serwisowych do Webba. Jeśli więc komunikacja zawiedzie, będziemy mieli w przestrzeni kosmicznej całkowicie bezużyteczny najdoskonalszy teleskop w idealnym stanie.
      Teleskop Kosmiczny Jamesa Webba (JWST) jest pierwszą misją kosmiczną, która wykorzystuje pasmo Ka do przesyłania tak dużej ilości danych. Już na etapie projektowania zdecydowano o wykorzystaniu Ka, części większego pasma K.
      Webb wysyła na Ziemię dane w paśmie o częstotliwości 25,9 Ghz, a prędkość transmisji może dochodzić do 28 Mb/s. Tak duża prędkość jest niezbędna, gdyż JWST może zebrać do 57 GB danych na dobę, chociaż rzeczywista ilość danych będzie zależała od zaplanowanych obserwacji. Dla porównania, Teleskop Hubble'a (HST) zbiera każdej doby nie więcej niż 2 GB danych.
      Pasmo Ka wybrano, gdyż kanałem tym można przesłać więcej danych niż powszechnie wykorzystywanymi w komunikacji kosmicznej pasmami X (7–11 GHz) czy S (2–4 GHz). Dodatkowo przeciwko wykorzystaniu pasma X przemawiał fakt, że antena pracująca w tym zakresie musiałaby być na tyle duża, że teleskop miałby problemy z utrzymaniem wysokiej stabilności, niezbędnej do prowadzenia obserwacji.
      Szybki transfer danych jest niezbędny na potrzeby przesyłania informacji naukowych. Webb korzysta też z dwóch kanałów pasma S. Jeden z nich, o częstotliwości 2.09 GHz to kanał odbiorczy, pracujący z prędkością 16 kb/s. Służy on do wysyłania do teleskopu poleceń dotyczących zaplanowanych obserwacji oraz przyszłych transmisji danych. Za pomocą zaś drugiego kanału, 2.27 GHz, pracującego w tempie 40 kb/s, Webb przysyła na Ziemię informacje dane inżynieryjne, w tym informacje o kondycji poszczególnych podzespołów.
      Łączność pomiędzy Ziemią a teleskopem nie jest utrzymywana przez 24 godziny na dobę. Dlatego też JWST musi przechowywać dane na pokładzie, zanim je nam przyśle. Magazynem danych jest 68-gigabajtowy dysk SSD, którego 3% pojemności zarezerwowano na dane inżynieryjne. Gdy już Webb prześle dane na Ziemię, oczekuje na potwierdzenie, że dotarły i wszystko z nimi w porządku. Dopiero po potwierdzeniu może wykasować dane z dysku, by zrobić miejsce na kolejne informacje. Specjaliści z NASA spodziewają się, że za 10 lat pojemność dysku, z powodu oddziaływania promieniowania kosmicznego, zmniejszy się do około 60 GB.
      Dane z Teleskopu Webba są odbierane na Ziemi przez Deep Space Network. DSN korzysta z trzech kompleksów anten znajdujących się w pobliżu Canberry, Madrytu i Barstow w Kalifornii. Z DNS korzysta wiele innych misji, w tym Parker Solar Probe, TESS czy Voyagery. Dlatego też JWST musi dzielić się z nimi ograniczonym czasem korzystania z anten. Wszystko to wymaga starannego planowania. Czas, w którym dana misja będzie mogła korzystać z anten DSN jest planowany z wyprzedzeniem sięgającym 12-20 tygodni. Wyjątkiem była sytuacja, gdy Teleskop Webba przygotowywał się do pracy, rozkładał poszczególne podzespoły, uruchamiał instrumenty, gdy były one sprawdzane i kalibrowane. Większość z tych czynności wymagała komunikacji w czasie rzeczywistym, wówczas więc Webb miał pierwszeństwo przed innymi misjami.
      Inżynierowie pracujący przy systemie komunikacji przykładali szczególną uwagę do jego niezawodności. Wiedzieli, że jeśli oni popełnią błąd, cała praca kolegów z innych zespołów pójdzie na marne. System komunikacji musi działać idealnie. Dlatego też wybrali znane rozwiązanie i odrzucili co najmniej dwie propozycje wykorzystania eksperymentalnej komunikacji laserowej.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...