Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Za kilka godzin Teleskop Webba dotrze do celu

Rekomendowane odpowiedzi

Dzisiaj około godziny 20:00 czasu polskiego kontrola naziemna Teleskopu Webba wyda mu polecenie uruchomienia silników i wprowadzi JWST na orbitę wokół punku libracyjnego L2 (punkt Lagrange'a). Teleskop pozostanie w tym miejscu przez co najmniej 10 lat. Jednak już teraz wszystko wskazuje na to, że misję Webba będzie można wydłużyć.

Obecnie Teleskop Kosmiczny Jamesa Webba (JWST) znajduje się w odległości mniej niż 6000 km od swojej docelowej orbity i porusza się w jej kierunku z prędkością ok. 200 metrów na sekundę. Najwyższa temperatura po jego gorącej stronie wynosi 55 stopni Celsjusza, a najniższa po stronie zimnej to -210 stopni.

Punkt libracyjny (punkt Lagrange'a) to taki punkt w przestrzeni w układzie dwóch ciał powiązanych grawitacją, w którym trzecie ciało o pomijalnej masie może pozostawać w spoczynku względem obu ciał układu. Tutaj mówimy o układzie Słońce-Ziemia i o Teleskopie Webba, czyli trzecim ciele, tym o pomijalnej masie. W układzie takich trzech ciał występuje pięć punktów libracyjnych, oznaczonych od L1 do L5. Na linii Słońce-Ziemia znajdują się trzy z nich. L3 leży za Słońcem z punktu widzenia Ziemi, L1 znajduje się pomiędzy Słońcem a Ziemią, a L2 to miejsce za Ziemią z punktu widzenia Słońca. Zatem L2 był jedyny możliwym do osiągnięcia punktem, w którym osłona termiczna Webba mogła chronić jego zwierciadła i instrumenty naukowe jednocześnie przed ciepłem emitowanym i przez Słońce i przez Ziemię.

Teleskop nie zostanie umieszczony w samym punkcie L2, a będzie wokół niego krążył po orbicie, której promień będzie większy od orbity Księżyca. Będzie on wynosił nawet 800 000 kilometrów, a przebycie pełnej orbity zajmie Webbowi pół roku. Dlaczego jednak nie ustawić Webba dokładnie w L2?

Punkty libracyjne przemieszczają się wraz z ruchem Ziemi wokół Słońca. Webb musiałby za L2 podążać. L2, podobnie jak L1 i L3 są punktami metastabilnymi. Jeśli narysujemy siatkę przedstawiającą gradient zmian grawitacji w tych punktach, będzie ona miała kształt siodła. Tak jakby punkty te znajdowały się na krawędzi łączącej dwa wystające ponad nią górskie szczyty. W kierunku obu szczytów nasze punkty (L1, L2 i L3) są stabilne. Kulka pchnięta w kierunku jednego ze szczytów, wróci do punktu wyjścia. Jednak po bokach naszej krawędzi opadają doliny i w tych kierunkach punkty te są niestabilne.

Znacznie łatwiejszą i bardziej efektywną alternatywą wobec umieszczenia Webba dokładnie w L2 jest wprowadzenie go na orbitę wokół tego punktu. Ma to i tę zaletę, że orbitujący Webb będzie równomiernie oświetlany przez Słońce, nie doświadczy zaćmienia Słońca przez Ziemię. A to bardzo ważne zarówno dla ładowania paneli słonecznych teleskopu jak i utrzymania równowagi termicznej, niezbędnej do precyzyjnej pracy jego instrumentów. Napęd Webbowi na orbicie L2 będą nadawały same oddziałujące siły grawitacyjne. Natomiast, jako, że L2 jest metastabilny, Webb będzie miał tendencję do opuszczenia jego orbity i zajęcia własnej orbity wokół Słońca. Dlatego też co mniej więcej trzy tygodnie odpali silniki, korygując swój kurs. W punktach L4 i L5 tego problemu nie ma. To punkty stabilne, a nasza siatka ze zmianami grawitacji ma tam kształt miski. Zatem obiekty krążące wokół tych punktów, samodzielnie pozostają na orbitach. Dlatego też znamy asteroidy krążące wokół L4 i L5, ale nie wokół pozostałych punktów libracyjnych.

Jako że Webb będzie musiał korygować swoją orbitę, czas jego misji jest ograniczony ilością paliwa. Przewidziano, że teleskop będzie pracował przez 10 lat. Już teraz jednak wiemy, że prawdopodobnie uda się ten czas wydłużyć. A to dzięki niezwykle precyzyjnemu wystrzeleniu rakiety Ariane, które wyniosła go w przestrzeń kosmiczna. Ta precyzja spowodowała, że podczas dwóch korekt kursu, jakie Webb wykonał, zużyto mniej paliwa niż planowano. Pozostało go więc na tyle dużo, że prawdopodobnie teleskop pozostanie w L2 znacznie dłużej niż planowano. Musimy bowiem pamiętać, że nie jest planowana żadna misja serwisowa do teleskopu. Więc nie będzie można uzupełnić jego paliwa.

Umieszczenie pojazdu w punkcie L2 to dość proste zadanie. Pozostaje więc pytanie, po co były zużywające cenne paliwo korekty kursu? Odpowiedź tkwi w samej architekturze Webba. Teleskop musiał dwukrotnie w czasie lotu odpalić silniki, gdyż rakieta Ariane nadała mu na tyle rozpędu, by mógł przebyć odległość dzielącą go od L2, jednak zbyt mało energii, by mógł całkowicie uciec z pola grawitacyjnego Ziemi.

Co prawda tę dodatkową energię Ariane mogłaby mu nadać podczas startu, jednak istniało wówczas ryzyko, że będzie jej nieco za dużo i Webb będzie poruszał się zbyt szybko, by wejść na orbitę wokół L2. Mógłby ją minąć. Problem ten można by rozwiązać wyhamowując teleskop. Jednak manewr hamowania za pomocą silników Webba zużyłby więcej paliwa, niż na korekty kursu. Jednak nie to było głównym problemem, a fakt, że silniki Webba są umieszczone po jego gorącej stronie, tej zwróconej w kierunku Słońce. Zatem Webb, żeby wyhamować, musiałby wykonać obrót o 180 stopni wokół własnej osi. Wówczas jego optyka i instrumenty naukowe, które wymagają bardzo niskich temperatur, zostałyby wystawione na bezpośrednie oddziaływanie Słońca, doszłoby do ich rozgrzania i... roztopienia kleju, którym są spojone.

Gdy Webb znajdzie się na swojej orbicie rozpocznie pięciomiesięczny proces testowania i kalibrowania zwierciadeł oraz instrumentów naukowych. Naukowcy etap misji rozpocznie się w czerwcu.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Webba pokazuje rzeczy, jakich nigdy nie widzieliśmy, w tym okres formowania się galaktyk. Webb pozwolił właśnie na szczegółowe obserwacje protogromady siedmiu galaktyk, o przesunięciu ku czerwieni z=7,9, co oznacza, że obserwujemy ją tak, jak wyglądała 650 milionów lat po Wielkim Wybuchu. Astronomowie określili jej prawdopodobną późniejszą ewolucję i doszli do wniosku, że z czasem utworzyła znaną obecnie Gromadę Warkocza Bereniki (Abell 1656), najgęstszą z gromad galaktyk.
      To szczególne, unikatowe miejsce przyspieszonej ewolucji galaktyk, a Webb daje nam bezprecedensową możliwość dokonania pomiarów prędkości tych siedmiu galaktyk, dzięki czemu możemy upewnić się, że tworzą one protogromadę, mówi główny autor badań, Takahiro Morishita z IPAC-California Institute of Technology.
      Dzięki precyzyjnym pomiarom dokonanym przez instrument NIRSpec naukowcy mogli potwierdzić odległość galaktyk oraz prędkość ich przemieszczania się przez halo ciemnej materii, która wynosi około 1000 km/s. Dane spektrograficzne zaś pozwoliły na modelowanie i mapowanie przyszłej ewolucji gromady. Po analizie naukowcy uznali, że najprawdopodobniej utworzyła ona Abell 1656. Obserwujemy te odległe galaktyki jak krople wody w różnych rzekach i możemy stwierdzić, że z czasem staną się one częścią jednego olbrzymiego nurtu, dodaje Benedetta Vulcani z Narodowego Instytutu Astrofizyki we Włoszech. Webb dostrzegł protogromadę dzięki wykorzystaniu zjawiska soczewkowania grawitacyjnego zapewnionego przez Gromadę Pandora (Abell 2744).
      Obserwowanie początków powstawania wielkich gromad galaktyk jak Pandora czy Warkocz Bereniki jest bardzo trudne, gdyż wszechświat się rozszerza, a to oznacza, że docierające do nas z coraz większej odległości fale świetlne są coraz bardziej rozciągnięte, przesuwając się ku podczerwieni. Przed Webbem nie dysponowaliśmy instrumentem, który rejestrowałby podczerwień w wystarczająco dużej rozdzielczości. Teleskop Webba powstał właśnie po to, by wypełnić tę lukę w astronomii. I, jak widać, świetnie się sprawdza.
      Sprawdzają się też przewidywania mówiące, że największą korzyść osiągniemy ze współpracy Webba z Hubble'em.Te siedem galaktyk w protogromadzie zostało wytypowanych właśnie przez Teleskop Hubble'a jako potencjalnie interesujący cel badawczy. Hubble nie ma jednak możliwości obserwowania światła o długości fali większej niż bliska podczerwień, dlatego też nie był w stanie dostarczyć nam zbyt wielu danych. Uzyskaliśmy je dzięki Webbowi.
      Co więcej, autorzy badań nad protogromadą przypuszczają, że współpraca Webba z Roman Grace Telescope, który ma zostać wystrzelony w 2027 roku, a który bazuje na jednym z teleskopów przekazanych NASA przez agencję wywiadowczą, może dostarczyć nam jeszcze więcej informacji o początkach gromad galaktyk.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba zaobserwował szczegóły zawierających krzemiany chmur w atmosferze odległej planety. W jej atmosferze bez przerwy dochodzi do mieszania, wznoszenia i opadania materiału w 22-godzinym cyklu. Wynikiem tego są tak olbrzymie zmiany jasności, że wspomniana planeta jest najbardziej zmiennym znanym nam obiektem o masie planetarnej.
      Naukowcy, na czele których stoi Brittany Miles z University of Arizona, zauważyli też wyjątkowo wyraźne sygnały świadczące o obecności wody, metanu i tlenku węgla oraz dowód na występowanie w atmosferze dwutlenku węgla. Tym samym Teleskop Webba wykrył największą liczbę molekuł zauważonych jednorazowo w atmosferze egzoplanety.
      Wspomniana egzoplaneta, VHS 1256 b, znajduje się w odległości 40 lat świetlnych od Ziemi o okrąża 2 gwiazdy. Okres jej obiegu wynosi ponad 10 000 lat. VHS 1256 b znajduje się około 4-krotnie dalej od swoich gwiazd, niż Pluton od Słońca. To czyni ją idealnym celem dla obserwacji za pomocą Webba. Dobiegające z niej światło nie miesza się ze światłem z jej gwiazd macierzystych, mówi Miles. Uczona dodaje, że w górnych partiach temperatura jej atmosfery sięga 830 stopni Celsjusza.
      Webb zauważył też dwa rodzaje ziaren krzemianów w chmurach. Mniejsze mogą być wielkości cząstek dymu, większe zaś są jak bardzo gorące miniaturowe ziarenka piasku. VHS 1256 b ma bardzo słabą grawitację, dlatego też chmury występują bardzo wysoko w jej atmosferze, co pozwala na ich obserwację. Drugą przyczyną tak gwałtownych zjawisk w atmosferze jest młody wiek planety. Naukowcy szacują, że uformowała się ona zaledwie 150 milionów lat temu i przez najbliższy miliard lat będzie się schładzała i zmieniała.
      Wiele z cech, które zaobserwowano na VHS 1256 b zauważono wcześniej na innych planetach. Jednak w ich przypadku wymagało to wielu obserwacji za pomocą różnych teleskopów. Tutaj zaś Teleskop Webba dostarczył wszystkich informacji jednocześnie. A to nie wszystko. Naukowcy uważają, że przez najbliższe miesiące i lata, analizując dane dostarczone przez Webba, będą zdobywali kolejne informacje. Mamy tutaj olbrzymią ilość danych uzyskanych w niedługim czasie. Czujemy olbrzymi potencjał i mamy nadzieję na wiele odkryć w danych, zebranych w ciągu zaledwie kilku godzin obserwacji, cieszy się Beth Biller z Uniwersytetu w Edynburgu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Stephen Kane z Uniwersytetu Kalifornijskiego w Riverside przeprowadził symulacje komputerowe, w których uzupełnił dwie rzucające się w oczy luki w Układzie Słonecznym. Pierwsza z nich to brak super-Ziemi, druga zaś to jej lokalizacja. Z symulacji wynika, że ich uzupełnienie zakończyło by historię życia na Ziemi.
      Największą planetą skalistą Układu Słonecznego jest Ziemia. Najmniejszym gazowym olbrzymem jest zaś Neptun o 4-krotnie większej średnicy i 17-krotnie większej masie. Nie ma żadnej planety o pośrednich cechach. W innych układach znajduje się wiele planet o wielkości i masie pomiędzy Ziemią a Neptunem. Nazywamy je super-Ziemiami, wyjaśnia Kane. Druga z luk to odległość od Słońca. Merkury położony jest o 0,4 jednostki astronomicznej (j.a.) od naszej gwiazdy, Wenus dzieli od niej 0,7 j.a., Ziemię – 1 j.a., a Marsa – 1,5 j.a. Kolejna planeta, Jowisz, znajduje się już 5,2 j.a. od Słońca. Kane w swoich symulacjach postanowił wypełnić tę lukę. Symulował więc istnienie tam planety o różnej masie i sprawdzał, jak jej obecność wpływała na inne planety.
      Wyniki symulacji – w ramach których Kane badał skutki obecności planety o masie 1-10 mas Ziemi na orbicie odległej od Słońca o 2-4 j.a. – opublikowane na łamach Planetary Science Journal, były katastrofalne dla Układu Słonecznego. Taka fikcyjna planeta wpłynęłaby na orbitę Jowisza, co zdestabilizowałby cały układ Słoneczny. Jowisz, największa z planet, ma masę 318-krotnie większa od Ziemi. Jego grawitacja wywiera więc duży wpływ na otoczenie. Jeśli super-Ziemia lub inny masywny obiekt zaburzyłby orbitę Jowisza, doszłoby do znacznych zmian w całym naszym otoczeniu. W zależności od masy i dokładnej lokalizacji super-Ziemi jej obecność – poprzez wpływ na Jowisza – mogłaby doprowadzić do wyrzucenia z Układu Słonecznego Merkurego, Wenus i Ziemi. Podobny los mógłby spotkać Urana i Neptuna. Jeśli zaś super-Ziemia miałaby znacznie mniejszą masę niż ta prowadząca do katastrofy i znajdowałaby się dokładnie po środku pomiędzy Marsem a Jowiszem, układ taki mógłby być stabilny. Jednak każde odchylenie w jedną lub drugą stronę skończyłoby się katastrofą.
      Badania Kane'a to nie tylko ciekawostka. Pokazują, jak delikatna jest równowaga w Układzie Słonecznym. Ma też znaczenie dla poszukiwania układów planetarnych zdolnych do podtrzymania życia. Mimo że podobne do Jowisza, odległe od swoich gwiazd, gazowe olbrzymy znajdowane są w zaledwie 10% układów, to ich obecność może decydować o stabilności orbit planet skalistych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy korzystający z Teleskopu Webba opublikowali pierwsze wyniki dotyczące formowania się gwiazd oraz pyłu i gazu w pobliskich galaktykach. W ramach projektu Physics at High Angular resolution in Nearby Galaxies (PHANGS) prowadzony jest największy z dotychczasowych przeglądów nieodległych galaktyk z użyciem najnowszego kosmicznego teleskopu. W badaniach pod kierunkiem Janice Lee z Gemini Observatory i NOIRLab bierze udział ponad 100 naukowców z całego świata.
      Uczeni postanowili przyjrzeć się 19 galaktykom spiralnym. W pierwszych miesiącach pracy Webba na celownik wzięli pięć z nich – M74, NGC 7496, IC 5332, NGC 1365 oraz NGC 1433 – i już opublikowali wstępne wnioski oraz artykuły naukowe.
      Jesteśmy zdumieni szczegółami struktur, jakie możemy obserwować, mówi David Thilker z Uniwersytetu Johnsa Hopkinsa. Bezpośrednio widzimy, jak energia z formowania się młodych gwiazd wpływ na pobliski gaz. To coś niezwykłego, wtóruje mu Erik Rosolowsky z kanadyjskiego University of Alberta.
      Na obrazach zarejestrowanych przez MIRI widzimy sieć wysoko zorganizowanych struktur – świecące obszary pyłu i bąble gazu łączące ramiona galaktyk. Struktury te powstały zarówno w wyniku oddziaływania indywidualnych gwiazd, jak i nachodzą na siebie, gdy tworzące się gwiazdy są wystarczająco blisko położone. Obszary, które są całkowicie ciemne na obrazach z Hubble'a, tutaj są rozświetlone i widzimy niezwykłe szczegóły. Możemy dzięki temu badać, jak pył z ośrodka międzygwiezdnego absorbuje światło z gwiazd i emituje je w podczerwieni, podświetlając niezwykle interesującą sieć pyłu i gazu, zachwyca się Karin Sandstrom z Uniwersytetu Kalifornijskiego w San Diego.
      Dzięki Webbowi naukowcy mogą dostrzec struktury, których dotychczas nie widzieli. Zespół PHANGS przez lata obserwował te galaktyki w paśmie optycznym, radiowym i ultrafioletowym, wykorzystując w tym celu Teleskop Hubble'a, Atacama Large Millimeter/Submillimeter Array i Very Large Telescope. Ale nie mogliśmy dostrzec najwcześniejszych etapów życia gwiazd, gdyż były one przesłonięte gazem i pyłem, dodaje Adam Leroy z Ohio State University. Dopiero Teleskop Webba pozwolił na uzupełnienie brakującej wiedzy.
      Webb pozwala dostrzec to, co dotychczas było niedostrzegalne. Na przykład jego instrument MIRI, pracujący w zakresie 7,7 i 11,3 mikrometra oraz NIRCam, który działa w zakresie 3,3 mikrometra, rejestrują emisję z wielopierścieniowych węglowodorów aromatycznych, które odgrywają ważną rolę w formowaniu się gwiazd i planet. To zaś pozwala na poznanie ewolucji galaktyk.
      Dzięki dużej rozdzielczości teleskopu możemy po raz pierwszy przeprowadzić kompletny badania formowania się gwiazd oraz przyjrzeć się bąblastym strukturom ośrodka międzygwiezdnego w pobliskich galaktykach poza Grupą Lokalną Galaktyk, wyjaśnia Janice Lee.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy wykorzystali Teleskop Webba do zarejestrowania pierścieni Chariklo. To największy ze znanych nam centaurów, niewielkich ciał poruszających się po orbitach wokół Słońca pomiędzy orbitami Jowisza i Neptuna. Chariklo znajduje się za Saturnem, w odległości ok. 3,2 miliarda kilometrów od Ziemi. Ma 250 kilometrów średnicy, a w 2013 roku astronomowie korzystający z teleskopów naziemnych odkryli, że posiada system dwóch pierścieni.
      Naukowcy obserwowali wówczas, jak Chariklo przechodzi na tle jednej z gwiazd. Zjawisko takie, które rzadko możemy obserwować, zwane jest okultacją i jest wykorzystywane do określania właściwości fizycznych zakrywanych obiektów. Ku ich zdumieniu okazało się, że jasność gwiazdy dwukrotnie się zmniejszyła jeszcze zanim została ona zasłonięta przez Chariklo, a gdy asteroida odsłoniła gwiazdę, ponownie doszło do dwukrotnego „mrugnięcia" gwiazdy. To pokazało, że Chariklo posiada system dwóch pierścieni i są to pierwsze znane nam pierścienie w Układzie Słonecznym znajdujące się wokół tak małego obiektu. Obecnie wiemy, że znajdują się one w odległości około 400 kilometrów od centaura.
      Wśród astronomów, którzy zarezerwowali sobie czas obserwacyjny Teleskopu Webba jest Pablo Santos-Sanz z Instituto de Astrofísica de Andalucía. Postanowił on skorzystać z faktu, że Chariklo miał przejść na tle gwiazdy Gaia DR3 6873519665992128512. Wykorzystał więc Webba do obserwacji tego zjawiska.
      Dane z przejścia były dokładnie takie, jak się spodziewano. Webb zarejestrował okultację gwiazdy zarówno przez Chariklo jak i jego pierścienie. Zaś krótko po okultacji naukowcy jeszcze raz przyjrzeli się centaurowi za pomocą Webba, zbierając dane dotyczące światła słonecznego odbijanego przez Chariklo i jego pierścienie. W ten sposób teleskop udowodnił nie tylko swoje niezwykłe możliwości obserwacyjne, ale również dostarczył nam nowych danych.
      Kosmiczny instrument zarejestrował trzy pasma absorpcji zamrożonej wody. Badania za pomocą teleskopów naziemnych również sugerowały istnienie tego lodu, jednak Webb dostarczył pierwszych dowodów, że istnieje tam zamarznięta woda w postaci krystalicznej. Wysokoenergetyczne cząstki zmieniają lód z postaci krystalicznej do amorficznej. Odkrycie krystalicznego lodu w systemu Chariklo oznacza, że bez przerwy zachodzą tam mikrokolizje, które albo odsłaniają pierwotny materiał, albo inicjują proces krystalizacji, mówią autorzy badań.
      To jednak nie wszystko. Naukowcy mają nadzieję, że dzięki szczegółowej analizie danych z Webba będą w stanie dokładnie odróżnić od siebie oba pierścienie Chariklo, określić ich grubość, rozmiary oraz właściwości budujących go cząstek. Chcieliby się też dowiedzieć, jak to się stało, że tak mały obiekt posiada pierścienie i odkryć pierścienie wokół innych niewielkich obiektów. Olbrzymia czułość Webba w zakresie podczerwieni w połączeniu z możliwościami rejestrowania danych z okultacji oznaczają, że teleskop znakomicie zwiększyć naszą wiedzę o odległych niewielkich obiektach Układu Słonecznego.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...