Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Segmenty zwierciadła Webba nie osiągnęły pozycji roboczej. Poruszają się w tempie 1 mm/dobę

Recommended Posts

Teleskop Webba (JWST) znajduje się już w odległości ponad 1,3 miliona kilometrów od Ziemi i od kilku dni ustawia swoje zwierciadła główne i wtórne w pozycji wyjściowej. Proces ten potrwa jeszcze kilka dni, gdyż poszczególne segmenty zwierciadła głównego przemieszczają się w ślimaczym tempie rosnącej trawy, ok. 1 mm na dobę. Tymczasem do celu – punktu libracyjnego L2 – teleskopowi pozostało mniej niż 130 000 kilometrów. Najwyższa temperatura po gorącej stronie JWST wynosi 56 stopni Celsjusza, a najniższa po stronie zimnej spadła już do -206 stopni.

Na czas startu poszczególne segmenty zwierciadła zostały zabezpieczone od tyłu trzema metalowymi kołkami. Teraz muszą się z tych kołków uwolnić, by mogły się poruszać, co pozwoli na ustawienie ich tak, by działały jak jedno wielkie zwierciadło. Każdy z segmentów musi przesunąć się w górę o 12,5 milimetra.

Wykonanie tej operacji wymaga sporo cierpliwości. Aktuatory poruszające segmentami zaprojektowano tak, by wykonywały niezwykle precyzyjne, niewielkie ruchy. Dzięki temu każdy z fragmentów można ustawić z dokładnością do 10 nanometrów (około 1/10 000 grubości ludzkiego włosa). Taka konstrukcja aktuatorów powoduje jednak, że gdy trzeba wykonać znacznie większe ruchy, potrzeba na to sporo czasu. Co więcej, system kontroli lustra może poruszać tylko jednym aktuatorem w danym momencie. Zdecydowano się na taką architekturę, gdyż jest ona prostsza z punktu widzenia złożoności elektroniki kontrolującej całość oraz bezpieczniejsza, gdyż komputery i czujniki mogą skupić się na monitorowaniu jednego aktualnie działającego aktuatora. Ponadto, aby zmniejszyć ilość ciepła docierającego z aktuatorów do zwierciadła, każdy z aktuatorów może poruszać się tylko przez krótki czas. Dlatego też przesunięcie każdego z segmentów o 12,5 milimetra wymaga sporej ilości czasu.

Gdy już wszystkie segmenty zostaną uwolnione z zabezpieczeń, rozpocznie się trwający kilka miesięcy proces precyzyjnego ustawiania segmentów tak, by działały jak jedno zwierciadło.

Na załączonej grafice możecie zobaczyć, a na jakim etapie znajdują się segmenty zwierciadła głównego i zwierciadła wtórnego (SM) w momencie pisania tej informacji. Zwierciadło główne podzielone jest na trzy sekcje, różniące się właściwościami optycznymi. W skład każdej z sekcji wchodzi sześć segmentów. Jak widzimy większość z nich uniosła się już o 7,5 mm i znajduje się 5 mm poniżej ostatecznej pozycji. Jedynie segmenty A3 oraz A6 jeszcze się nie poruszyły. Będą one unoszone osobno, pod koniec całego procesu, gdyż ich czujniki pozycji pracują w inny sposób niż pozostałych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

No, udało Wam się z tym clickbajtem :) Już myślałem, że coś skopali, a tu "wg. planu". :)

 

  • Thanks (+1) 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA poinformowała, że pomiędzy 23 a 25 maja w główne zwierciadło Teleskopu Webba uderzył mikrometeoryt. Takie wydarzenia są nieuniknione, a ich wystąpienie zostało przewidziane przez twórców teleskopu. Uwzględniono je zarówno na etapie projektowania, jak i testowania teleskopu. Jednak majowe zderzenie było silniejsze, niż te uwzględnione podczas testów.
      Inżynierowie przeprowadzili już wstępne oceny skutków uderzenia. Okazało się, że nie wpłynęło ono na Teleskop. Webb wciąż pracuje powyżej oczekiwań. Zwierciadło główne teleskopu zaprojektowano tak, by wytrzymywało uderzenia miniaturowych obiektów poruszających się z olbrzymią prędkością. Podczas budowy teleskopu prowadzono zarówno symulacje cyfrowe, jak i testy laboratoryjne, które miały pokazać, w jaki sposób należy wzmocnić urządzenie tak, by nie uległo uszkodzeniu w wyniki uderzeń.
      Zawsze wiedzieliśmy, że Webb będzie musiał znieść niekorzystne warunki, takie jak promieniowanie ultrafioletowe, oddziaływanie naładowanych cząstek ze Słońca, promieniowanie z egzotycznych źródeł w galaktyce oraz uderzenia mikrometeorytów, mówi Paul Geithner z NASA. Zaprojektowaliśmy i zbudowaliśmy Webba z pewnym marginesem – optycznym, termicznym, elektrycznym i mechanicznym – by mógł on prowadzić badania naukowe nawet po wielu latach pobytu w przestrzeni kosmicznej.
      Przykładem może być tutaj optyka Webba. Podczas pobytu na Ziemi utrzymywano ją w znacznie większej czystości niż wymagana. Dzięki temu ma ona większą wydajność, co pozytywnie wpływa na czułość całego teleskopu. To zaś daje większy margines bezpieczeństwa pod kątem degradacji urządzenia w czasie.
      Webb ma też możliwość precyzyjnego korygowania pozycji każdego z segmentów zwierciadła głównego. W przypadku uderzenia i uszkodzenia, pozycję segmentu można zmienić tak, by w jak największym stopniu skorygować błędy powstające wskutek jego uszkodzenia. Inżynierowie już przeprowadzili odpowiednie korekty segmentu C3, w który uderzył mikrometeoryt i planują kolejne korekty, by w jeszcze większym stopniu zniwelować niedoskonałości.
      To jednak nie wszystko. Zespół kontroli lotu Webba przeprowadza manewry obronne jeśli w kierunku teleskopu podąża znany deszcz meteorytów. Uderzenie z maja nie było skutkiem pojawienia się takiego deszczu. To zderzenie z pojedynczym mikrometeorytem. Wydarzenia tego typu są nieuniknione. Po zderzeniu powołano specjalny zespół inżynierów, którego zadaniem jest opracowanie metod niwelowania skutków zderzeń w przyszłości. Po kolejnych zderzeniach i zebraniu większej ilości danych, inżynierowie będą w stanie przewidzieć, w jaki sposób może zmieniać się wydajność Webba w wyniku takich wydarzeń.
      Spodziewaliśmy się, że w zwierciadło główne Webba będą uderzały mikrometeoryty. Od czasu wystrzelenia teleskopu doszło do czterech małych uderzeń. To ostatnie było jednak większe, niż to, co braliśmy pod uwagę w naszych symulacjach, mówi Lee Feinberg.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zakończył się proces ustawiania elementów optycznych Teleskopu Kosmicznego Jamesa Webba (JWST). Obsługa naziemna potwierdziła, że wszystkie cztery instrumenty naukowe teleskopu otrzymują ostry obraz, który można skoncentrować na wybranym obiekcie. W związku z tym zapadła decyzja o przejściu do ostatniej fazy przygotowań teleskopu do pracy – przekazania instrumentów naukowych do użytkowania.
      Już wcześniej pojawiały się informacje, że poszczególne elementy JWST pracują powyżej oczekiwań. Teraz NASA pochwaliła się, że cała optyka działa lepiej, niż najbardziej optymistyczne założenia. Jakość obrazu trafiająca do każdego z instrumentów jest ograniczona wyłącznie limitem dyfrakcyjnym, co oznacza, że odwzorowanie detali jest w tym przypadku najlepsze na jakie pozwalają prawa fizyki. Jako, że limit dyfrakcyjny jest zależny od długości fali obserwowanego światła oraz średnicy źrenicy wejściowej, oznacza to, że z optyka teleskopu działa najlepiej, jak to możliwe. Wraz z zakończeniem procesu ustawiania teleskopu moja praca przy nim dobiegła końca. Uzyskane obrazy głęboko zmieniły sposób, w jaki postrzegam wszechświat. Jesteśmy otoczeni przez symfonię stworzenia, galaktyki są wszędzie. Mam nadzieję, że wszyscy na świecie będą mogli to zobaczyć, stwierdził doktor Scott Acton z Ball Aerospace, który jest odpowiedzialny za elementy optyczne teleskopu.
      Teraz, gdy optyka teleskopu została ustawiona tak, jak należy, do Mission Operations Center w Space Telescope Science Institute w Baltimore przybyli eksperci, którzy skupią się na instrumentach naukowych JWST. Każdy z tych instrumentów to niezwykle skomplikowane urządzenie złożone z unikatowych soczewek, masek, filtrów i czujników. Każdy z tych elementów musi zostać skonfigurowany i sprawdzony w różnych ustawieniach, by w pełni potwierdzić gotować do pracy. Z kolei część specjalistów odpowiedzialnych za optykę zakończyła swoją przygodę z JWST.
      Mimo, że zakończono ustawianie teleskopu, prowadzone będą pewne prace związane z kalibracją. W ramach przekazania instrumentów naukowych do użytkowania JWST będzie kierowany na różne obszary nieboskłonu tak, by do jego osłony termicznej docierała różna ilość promieniowania słonecznego. Takie działania mają potwierdzić termiczną stabilność teleskopu podczas zmiany obserwowanych obiektów. Ponadto ustawienie zwierciadła głównego będzie co dwa dni sprawdzane i w miarę potrzeb wprowadzane będą korekty.
      Ostatnia faza przygotowywania JWST do pracy potrwa około 2 miesięcy. Latem teleskop rozpocznie badania naukowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Jamesa Webba zobaczy pierwsze galaktyki, jakie uformowały się po Wielkim Wybuchu. By jednak tego dokonać, jego instrumenty muszą osiągnąć bardzo niską temperaturę. NASA ogłosiła właśnie, że MIRI (Mid-Infrared Instrument) – najważniejszy z instrumentów Webba – został schłodzony do swojej docelowej temperatury pracy, wynoszącej 7 kelwinów (-266,15 stopni Celsjusza).
      MIRI początkowo schładzał się pasywnie, podobnie jak pozostałe instrumenty Webba. Przed promieniami Słońca chroni je wielka osłona przeciwsłoneczna, dzięki której MIRI osiągnął temperaturę -183 stopni Celsjusza. Później MIRI chłodzony był za pomocą specjalnego urządzenia, które utrzyma jego niską temperaturę przez cały okres pracy.
      Bardzo niskie temperatury są niezbędne instrumentom naukowym Webba. Teleskop pracuje w podczerwieni. Odległe galaktyki, gwiazdy ukryte w chmurach pyłu czy planety w naszym Układzie Słonecznym emitują promieniowanie podczerwone. Problem w tym, że emitują je wszystkie ciepłe obiekty. W tym urządzenia elektroniczne i optyczne Webba. Dlatego też trzeba je schłodzić do niskich temperatur, zmniejszając ich emisję w podczerwieni, by nie zakłócała emisji rejestrowanej z obserwowanych obiektów. Jako, że MIRI rejestruje większe długości fal, musi być chłodniejszy niż pozostałe trzy instrumenty.
      Kolejnym powodem, dla którego instrumenty muszą być chłodne, jest występowanie zjawiska występowania tzw. prądu ciemnego. To niewielki prąd płynący w urządzeniach rejestrujących światło, który pojawia się nawet gdy nie docierają do nich żadne fotony. Jest on generowany przez wibrujące atomy samego urządzenia. Daje on sygnał podobny do prawdziwego sygnału rejestrowanego przez detektory, zakłócając ich pracę i dostarczając fałszywych danych, jakoby do wykrywacza dotarło promieniowanie z zewnętrznego źródła. Im chłodniejsze jest urządzenie rejestrujące, tym mniejsze wibracje jego atomów, zatem tym słabszy prąd ciemny. MIRI zaś jest bardziej niż pozostałe instrumenty Webba czułe na prąd ciemny. Dlatego musi być jeszcze chłodniejsze. A trzeba wiedzieć, że na każdy dodatkowy stopień Celsujsza prąd ciemny wzmaga się aż 10-krotnie.
      Gdy przed tygodniem MIRI został schłodzony do 6,4 kelwina (-266,75 C), specjaliści z NASA rozpoczęli serię testów, by upewnić się, że urządzenie działa jak należy. Następnie wydali urządzeniu całą serię poleceń, sprawdzając, czy zostaną one wypełnione zgodnie z oczekiwaniami. Ćwiczyliśmy to przez wiele lat. To przypominało trochę scenariusz filmowy. Wszystko mieliśmy rozpisane krok po kroku. Gdy zaczęły nadchodzić dane z testu z radością zauważyłem, że wszystko działa tak, jak się spodziewaliśmy, mówi odpowiedzialny za MIRI, Mike Ressler.
      Teraz, gdy MIRI osiągnął odpowiednią temperaturę pracy i działa jak należy, naukowcy wykonają serię zdjęć testowych gwiazd i innych znanych obiektów. Posłużą one do kalibracji MIRI i dalszego sprawdzenia jego działania. Jednocześnie kalibrowane będą pozostałe trzy instrumenty naukowe Webba.
      MIRI to współne dzieło NASA i Europejskiej Agencji Kosmicznej (ESA). Z ramienia NASA prace nad MIRI nadzorowali naukowcy z Jet Propulsion Laboratory, z ramienia ESA byli to przedstawiciele różnych instytutów astronomicznych.
      Teleskop Webba rozpocznie pracę naukową latem bieżącego roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Już niemal wszystkie instrumenty naukowe Teleskopu Kosmicznego Jamesa Webba zostały zsynchronizowane ze zwierciadłem głównym. Niemal wszystkie, gdyż ostatni z nich – Mid-Infrared Instrument (MIRI) – można będzie ustawić gdy osiągnie odpowiednią temperaturę pracy. MIRI potrzebuje tak niskiej temperatury, że nie wystarczy mu chłodzenie pasywne, dlatego jest od wielu dni schładzany za pomocą specjalnego nowatorskiego urządzenia kriogenicznego.
      Około połowy marca informowaliśmy, że zakończył się kluczowy etap ustawiania segmentów zwierciadła Teleskopu Webba. Aby tego dokonać, konieczne było dostrojenie zwierciadła głównego i wtórnego do urządzenia Near-Infrared Camera (NIRCam). To pozwoliło na przeprowadzenie niezbędnych testów i upewnienie się, że system optyczny Webba działa bez zarzutów. Uzyskano wówczas obraz wybranej gwiazdy wykonany za pomocą NIRCam. Po zakończeniu tego etapu rozpoczęto fazę dostrajania optyki do współpracy z Fine Guidance Sensor (FGS), Near-Infrared Slitless Spctrograph (NIRISS) oraz Near-Infrared Spectrometer (NIRSpec).
      Instrument NIRCam, z którym najpierw synchronizowano optykę, to pracująca w podczerwieni kamera, rejestrująca fale o długości od 0,6 do 5 mikrometrów. Jej celem jest zarejestrowanie światła pierwszych gwiazd i galaktyk, obrazowanie gwiazd w pobliskich galaktykach, młode gwiazdy w Drodze Mlecznej czy obiekty w Pasie Kuipera. Kamerę wyposażono w koronografy, pozwalające na fotografowanie bardzo słabo świecących obiektów, znajdujących się w pobliżu obiektów znacznie jaśniejszych. Dzięki temu możliwe będą dokładne obserwacje planet krążących wokół pobliskich gwiazd.
      NIRSpec również działa w zakresie 0,6–5 mikrometrów. Spektrograf będzie rejestrował całe widmo promieniowania, co pozwoli na poznanie cech fizycznych badanych obiektów, jak ich masa temperatura czy skład chemiczny. Z kolei FGS/NIRISS będzie odpowiedzialny za precyzyjne pozycjonowanie Webba na wybrane obiekty, wykrycie pierwszego światła, jakie rozbłysło we wszechświecie oraz wykrywanie, charakteryzowanie i badania spektroskopowe egzoplanet.
      Instrument, na którego zestrojenie z optyką wciąż czekamy, to MIRI. Składa się on z kamery i spektrografu pracujących w średnich zakresach podczerwieni (5–28 mikrometrów). To niezwykle czułe urządzenie naukowe. MIRI zobaczy przesunięcie ku czerwieni odległych galaktyk, słabo widoczne planety, tworzące się dopiero gwiazdy, będzie obserwował obiekty w Pasie Kuipera.
      To ono dostarczy nam najbardziej spektakularnych zdjęć. Jednak, by móc wykorzystać swoje niezwykłe możliwości, musi zostać schłodzony do temperatury -266,15 stopni Celsjusza. Osiągnięcie tak niskiej temperatury nie jest możliwe za pomocą samego tylko pasywnego chłodzenia i ochrony zapewnianej przez osłonę przeciwsłoneczną. Potrzebne jest chłodzenie aktywne, za które odpowiada nowatorskie dwustopniowe urządzenie. Jego pierwszy stopień schłodzi MIRI do temperatury -255,15 stopni, a dzięki drugiemu MIRI osiągnie wymaganą temperaturę pracy wynoszącą -266,15 stopni Celsjusza. To zaledwie 7 stopni powyżej zera absolutnego.
      Do niedawna temperatura MIRI spadała bardzo wolno. W ciągu 54 dni chłodzenia pasywnego zmniejszyła się ona o 58 stopni. Przed 10 dniami włączono chłodzenie aktywne i w tym czasie temperatura MIRI spadła o kolejne 52 stopnie. W chwili pisania tego tekstu temperatura MIRI wynosi -231,35 stopni Celsjusza.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...