Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Największy na świecie obszar rozrodu ryb znaleziono pod lodami Antarktyki

Recommended Posts

W pobliżu Lodowca Szelfowego Filchnera na południu Morza Weddella w Antarktyce znaleziono największy obszar rozrodu ryb. Podwodna kamera sfilmowała tysiące gniazd ryby z gatunku Naopagetopsis ionah. Na podstawie zajmowanego obszaru i zagęszczenia oszacowano, że może znajdować się tam około 60 milionów gniazd. Naukowcy podkreślają, że odkrycie potwierdza słuszność starań o utworzenie obszaru chronionego na atlantyckiej części Oceanu Południowego.

Na pierwsze gniazda natrafiono w lutym 2021 roku. Zauważyli je naukowcy z Instytutu Badań Polarnych i Morskich im. Alfreda Wegenera (Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung) pracujący pod kierunkiem Autuna Pursera na statku Polarstern. Gniazda znajdowały się na głębokości 535–420 metrów. A im większy obszar uczeni sprawdzali, tym więcej gniazd widzieli. Trwające wiele miesięcy badania wykazały, że średnie zagęszczenie gniazd wynosi 1 na 3 m2, chociaż zdarzały się fragmenty dna, gdzie odnotowywano nawet 2 gniazda na m2. Przeprowadzone mapowanie wskazuje, że cały region gniazdowania obejmuje 240 km2, i znajduje się na nim około 60 milionów gniazd.

Naukowcy z Instytutu Wegenera badają ten region z pokładu Polarsetrna już od początku lat 80. ubiegłego wieku. Dotychczas znajdowano pojedyncze lub niewielkie grupki gniazd Naopagetopsis ionah.

Podczas badań naukowcy wykorzystali OFOBS (Ocean Floor Observation and Bathymetry System). To specjalna klatka na kamerę, przystosowana do pracy w ekstremalnych warunkach. Po spektakularnym odkryciu tak wielu gniazd, zaczęliśmy opracowywać strategię, która pozwoli nam ocenić wielkość obszaru. Gniazda ciągnęły się bez końca, a każde z nich ma około 75 cm średnicy. Są więc znacznie większe niż struktury i zwierzęta, jakie zwykle wykrywamy za pomocą systemu OFOBS. Unieśliśmy więc nieco kamerę nad dnem i zwiększyliśmy prędkość do maksymalnej możliwej przy opuszczonej kamerze. Zbadaliśmy w ten sposób 45 600 metrów kwadratowych powierzchni i naliczyliśmy tam niewiarygodną liczbę 16 160 gniazd, ekscytuje się Purser.

Badania wykazały, że każde gniazdo ma głębokość około 15 cm i średnicę 75 cm. Zostało wydrążone w mulistym dnie, a centralne części gniazd są otoczone niewielkimi kamykami. Naukowcom udało się wyróżnić kilka typów gniazd. W „aktywnych” zauważyli od 1500 do 2500 jaj. W 75% przypadków gniazda takie były pilnowane przez dorosłe ryby. Znaleziono też gniazda „nieaktywne”. W nich jaj nie było. Znajdowała się tam ryba lub też martwa ryba.

Gdy naukowcy przyjrzeli się danym oceanograficznym i biologicznym, okazało się, że obszar gniazdowania nakłada się z obszarem napływu cieplejszych wód z Morza Weddella w kierunku szelfu. Uczeni zauważyli też, że region ten jest wyjątkowo często odwiedzane przez foki, prawdopodobnie poszukujące tam pożywienia. Masę kolonii ryb oszacowano na 60 000 ton.

Biorąc pod uwagę biomasę ryb, ten wielki obszar rozrodu jest niezwykle ważnym elementem ekosystemu Morza Weddella i jest najprawdopodobniej największym znanym tam tego typu obszarem na świecie, napisali naukowcy na łamach Current Biology.
Odkrycie to pokazuje, jak ważne jest ustanowienie tutaj Morskiego Obszaru Chronionego, mówi profesor Antje Boetius, dyrektor Instytutu Wegenera. Niestety Morski Obszar Chroniony Morza Weddella wciąż nie został jednogłośnie zatwierdzony przez Komisję ds. Zachowania Żywych Zasobów Morskich Anarktyki (CCAMLR).

CCAMLR powstała w 1982 roku w celu ochrony zasobów Antarktyki. Jej członkowie zgodzili się dbać o to, by nie dochodziło tam do nadmiernego odławiania ryb. Jednak wiadomo, że w Antarktyce dochodzi do nielegalnych połowów. Nowo odkrytemu obszarowi rozrodczemu na razie to nie grozi, gdyż znajduje się on pod lodem, zatem by się tam dostać potrzebny jest lodołamacz. Jednak tak ważny obszar powinien być zdecydowanie lepiej chroniony. Stąd potrzeba utworzenia Morskiego Obszaru Chronionego.

Utworzenie Morskiego Obszaru Chronionego Morza Weddela zaproponowały w 2016 roku Niemcy i Unia Europejska. Miałby on objąć region o powierzchni 1,8 miliona km2. Obecnie oceany są chronione w niewielkim tylko stopniu. Obszary chronione zajmują jedynie ok. 8% powierzchni oceanów, ale rzeczywista ochrona jest roztoczona na 5%. W tym jedynie na niewielkich fragmentach całkowicie zakazano jakiejkolwiek działalności związanej z połowem, wydobywaniem zasobów, transportem czy turystyką.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Przyroda nie przestaje mnie zadziwiać (a chyba już to kiedyś pisałem :P).

Co ciekawe, nie mogę znaleźć nigdzie w Internecie zdjęcia tej ryby (Naopagetopsis ionah). Na tym zdjęciu gniazd widać je, jak siedzą na gniazdach, ale są za małe aby zorientować się jak te ryby wyglądają.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Michał Styczyński z Wydziału Biologii Uniwersytetu Warszawskiego odkrył, że bakterie z Antarktyki wytwarzają naturalną substancję z grupy melanin. Można by ją wykorzystać w kremach z filtrem UV, zastępując syntetyczny oksybenzon, który przyczynia się do wymierania koralowców. Środek ten zaburza gospodarkę hormonalną parzydełkowców, uniemożliwiając im rozmnażanie się.
      Uczony zauważył, że pod wpływem odpowiedniego stresu środowiskowego bakterie wytwarzają substancję z grupy melanin. Może ona potencjalnie posłużyć do zastąpienia nią oksybenzonu. Antarktyka jest jednym z najbardziej ekstremalnych regionów na Ziemi. Charakteryzuje się ona bardzo niskimi temperaturami, dochodzącymi do -90 °C, wysoką ekspozycją na promieniowanie UV, niską dostępnością substancji odżywczych, a także obecnością silnie zasolonych zbiorników wodnych. Organizmy występujące w tak skrajnych warunkach musiały wykształcić szereg cech adaptacyjnych umożliwiających im przeżycie. Zimnolubne bakterie, określane jako psychrofile lub psychrotoleranty, wytwarzają m.in. specyficzne metabolity wtórne, takie jak barwniki ochronne, dzięki którym mogą optymalnie funkcjonować w polarnym środowisku, mówi Styczyński. Naturalną melaninę można by wytwarzać na skalę przemysłową namnażając bakterie w laboratorium i poddając je następnie odpowiedniej stymulacji.
      Jednak to nie jedyna zaleta bakterii arktycznych. Badania wykazały, że wytwarzają one też karotenoidy posiadające bardzo silne właściwości przeciwutleniające. Również i one mogą odegrać ważną rolę. Wytwarzane przez bakterie związki, ze względu na swoją specyficzną, wielonienasyconą strukturę i wynikające z niej właściwości przeciwutleniające, zapobiegają szkodliwemu działaniu promieniowania UV. Ponadto odgrywają one istotną rolę w kontrolowaniu płynności błon i chronią komórki bakteryjne przed uszkodzeniem na skutek zamarzania. Tego rodzaju substancje mają zdolność wychwytywania wolnych rodników, dlatego są w centrum zainteresowania laboratoriów produkujących preparaty kosmetyczne do pielęgnacji skóry o działaniu przeciwstarzeniowym. Na rynku obowiązują jednak ścisłe normy i restrykcje, które definiują zawartość zanieczyszczeń pochodzących z syntezy chemicznej. Nasze odkrycia wskazują, że przemysł kosmetyczny mógłby na dużo większą skalę korzystać z substancji pochodzenia naturalnego, dodaje Michał Styczyński.
      Niezwykle ważną cechą bakterii antarktycznych jest fakt, że łatwo jest je hodować. Ze względu na ich fizjologię organizmy te mają niewielkie wymagania odnośnie temperatury i dostępności pokarmu. Nie ma żadnych większych przeszkód natury technologicznej, by tą drogą pozyskiwać naturalne substancje na skalę przemysłową. Bakterie z Antarktydy mogą też wspomagać wzrost roślin. Mogą zwiększać dostępność mikroelementów, co można wykorzystać w rolnictwie. W praktyce można więc wykorzystać szczepy bakterii do zwiększania jakości i biomasy roślin uprawnych, chronić je przed chorobami, a także redukować ilość stosowanych nawozów chemicznych, wyjaśnia naukowiec.
      Komercjalizacją odkryć ma zająć się spółka Biotemist, utworzona przy Uniwersytecie Warszawskim.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Topniejące lądolody na biegunach wywołują zmiany mierzalne w skali globalnej, których rozmiary zaskoczył naukowców. I nie chodzi tutaj o podnoszący się poziom oceanów, a o ruchy samej skorupy ziemskiej uwolnionej od ciężarów miliardów ton lodu. Doktor Sophie Coulson i jej zespół opisują na łamach Geophysical Research Letters, jak skorupa ziemska pod Grenlandią i Antarktydą zmienia swój kształt, a zmiany te mają wpływ na obszary położone tysiące kilometrów dalej.
      Naukowcy prowadzili wiele badań bezpośrednio pod lodowcami czy lądolodami. Wiedzą więc, że te masy lodu definiują region, w którym się znajdują. Nie mieli jednak pojęcia, że mają one wpływ na skalę globalną, mówi Coulson, która pracuje na Uniwersytecie Harvarda.
      Świeżo upieczona doktorantka analizowała zdjęcia satelitarne dotyczące topnienia lądolodów z lat 2003–2018. Uczeni byli w stanie zmierzyć poziomie przemieszczanie się skorupy ziemskiej spowodowane uwolnieniem jej od nacisku lodu. Wtedy też ze zdumieniem zauważyli, że w niektórych miejscach skorupa przesunęła się bardziej w poziomie niż w pionie. Dodatkowym zaskoczeniem był zasięg tych zmian. Można je było bowiem zauważyć na olbrzymiej przestrzeni. A to, jak stwierdzają uczeni, może dostarczyć nam nowych narzędzi do monitorowania zmian czap lodowych.
      Wyobraźmy sobie drewnianą belkę w wodzie. Jeśli naciśniemy na belkę i przesuniemy ją w dół, woda pod nią również przemieści się w dół. Jeśli podniesiemy belkę, woda pod nią również się podniesie i wypełni pustą przestrzeń, stwierdza Coulson. W niektórych częściach Antarktyki unosząca się skorupa ziemska prowadzi do zmian kąta nachylenia skał leżących pod lodem, co zmienia dynamikę lodu, dodaje.
      Współczesne topnienie lądolodów tylko ostatni z epizodów tego typu zmian. Arktyka jest szczególnie interesująca, bo mamy tutaj nie tylko współczesną pokrywę lodową, ale również dane z ostatniej epoki lodowej. Skorupa ziemska wciąż unosi się od jej zakończenia, mówi Coulson. Jeśli chodzi o krótką, współczesną skalę, to myślimy o Ziemi jak o gumowej piłce. Natomiast w skali tysiącleci ziemia zachowuje się bardziej jak wolno przemieszczająca się ciecz. Procesy z epoki lodowej wywierały na nią wpływ przez tysiące lat i wciąż możemy obserwowac skutki ich działań.
      Lepsze zrozumienie wszystkich czynników wpływających na ruchy skorupy ziemskiej jest bardzo ważne z punktu widzenia nauk o Ziemi. Na przykład, żeby dokładnie obserwować ruchy tektoniczne i monitorować trzęsienia ziemi, musimy być w stanie odróżnić te zjawiska od ruchu powodowanego obecną utratą lodu, wyjaśnia uczona.
      Przeprowadzone przez Sophie badania są pierwszymi, które wykazały, że zarówno wielkość jak i rozległość ruchu skorupy ziemskiej spowodowanego utratą masy przez lodowce i lądolody, jest większa niż przypuszczano, zaznacza profesor Glenn Antony Milne z University of Ottawa. I dodaje, że ma to np. znaczenie dla danych satelitarnych dotyczących rozkładu masy na naszej planecie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Europa ma prawdopodobnie jedne z najbardziej rozdrobnionych rzek na świecie. W samej Polsce jest 77 tys. sztucznych barier – średnio jedna na km rzeki czy strumyka – wynika z badań opublikowanych w Nature. Naukowcy komentują, że konstrukcje te szkodzą bioróżnorodności, a istnienie wielu z nich nie ma ekonomicznego sensu.
      W ramach projektu AMBER koordynowanego przez walijski Uniwersytet Swansea oszacowano, że w 36 europejskich krajach jest co najmniej 1,2 mln barier w nurcie wodnym rzeki. A to oznacza, że na 4 kilometry rzeki przypadają średnio 3 bariery zbudowane przez człowieka (0,74 bariery na 1 km). Polska jest powyżej europejskiej średniej: na 1 km strumyka przypada u nas 1 bariera. Rekordzistką jest jednak Holandia, gdzie na kilometr rzeki przypada prawie 20 barier.
      To zaskakująco wysokie liczby w stosunku do tego, co wiadomo było wcześniej. Ponad 60 proc. konstrukcji jest bowiem na tyle niewielkich (mają np. poniżej 2 m wysokości), że były dotąd pomijane w statystykach. W zakrojonych na dużą skalę badaniach opracowano Atlas Zapór AMBER – pierwszą kompleksową ogólnoeuropejską inwentaryzację zapór. Zarejestrowano tam tysiące dużych zapór, ale i znacznie większą liczbę niższych struktur, takich jak jazy, przepusty, brody, śluzy i rampy, które były dotąd niewidoczne w statystykach, a są głównymi sprawcami fragmentacji rzek. Wyniki badań – koordynowanych przez Barbarę Belletti – opublikowano w Nature. W ramach projektu powstała też aplikacja AMBER, w której każdy może pomóc dokumentować brakujące dotąd w statystykach bariery.
      Ponieważ policzenie wszystkich barier nie było fizycznie możliwe, naukowcy w badaniach terenowych przewędrowali wzdłuż 147 rzek (2,7 tys. km) i odnotowywali wszelkie sztuczne bariery w ich nurtach. Na tej podstawie oszacowano, ile barier może być w Europie.
      Jeden ze współautorów badania prof. Piotr Parasiewicz, kierownik Zakładu Rybactwa Rzecznego w Instytucie Rybactwa Śródlądowego im. S. Sakowicza zaznacza, że bariery te są ogromnym utrudnieniem w migracji ryb rzecznych nie tylko takich jak łososie, pstrągi, jesiotry, węgorze, ale także płotki czy leszcze. Za sprawą konstrukcji rzecznych gatunki te mają coraz trudniejsze warunki do przeżycia.
      To jednak nie jedyny minus. Jeśli na rzekach mamy tysiące barier, to zamieniamy nasze rzeki w stawy - mówi naukowiec. Powyżej bariery tworzy się bowiem często zalew, w którym woda płynie bardzo powoli, a lepiej radzą sobie tam organizmy charakterystycznie nie dla rzek, ale właśnie stawów. Z ryb są to choćby karpie czy leszcze. A to zwykle gatunki mniej wyspecjalizowane i bardziej pospolite.
      Bariery zmieniają też temperaturę wody (powyżej bariery jest często ona cieplejsza niż poniżej). A w dodatku blokują przepływ osadów i materii. A w poprzegradzanej rzece wolniej zachodzą procesy samooczyszczania.
      Ponadto z danych dostarczonych przez wolontariuszy w ramach aplikacji AMBER wynikło, że ponad 10 proc. europejskich barier jest nieużytecznych. Gdyby więc je usunąć, nie miałoby to żadnego ekonomicznego znaczenia. A to by oznaczało, że w Europie można by było rozebrać ok. 150 tys. barier bez żadnych strat ekonomicznych. Za to z zyskiem dla środowiska i dla ludzi – ocenia prof. Parasiewicz.
      Jednym z praktycznych wyników naszego projektu jest to, że Unia Europejska zadeklarowała w swoim Programie Bioróżnorodności do 2030 r., że udrożni 25 tys. km rzek – komentuje prof. Parasiewicz.
      AMBER otrzymał finansowanie z unijnego programu badań naukowych i innowacji "Horyzont 2020". Celem tego projektu jest zastosowanie zarządzania adaptacyjnego do eksploatacji zapór i innych barier w celu osiągnięcia bardziej zrównoważonego wykorzystania zasobów wodnych i skuteczniejszego przywrócenia ciągłości ekosystemów rzecznych. W ramach projektu opracowano narzędzia i symulacje, które mają pomóc przedsiębiorstwom wodociągowym i zarządcom rzek zmaksymalizować korzyści płynące z barier i zminimalizować ich wpływ na środowisko.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niekiedy ośmiornice polują z rybami. Polowanie zbiorowe pozwala objąć działaniami większy obszar i zwiększa szanse na schwytanie ofiary. Okazuje się jednak, że gdy ośmiornice Octopus cyanea są niezadowolone z partnerów albo anulują współpracę, stosują uderzenia ramieniem. Naukowcy porównują to do ciosu pięścią i nazywają aktywnym przemieszczeniem (ang. active displacement) ryby.
      Czasowe sojusze między ośmiornicami i rybami rafowymi są dokumentowane od dziesięcioleci. Mogą one obejmować licznych uczestników z rożnych gatunków - podkreślają autorzy publikacji z pisma Ecology. Ośmiornice i ryby są znane ze zbiorowych polowań, podczas których czerpią korzyści z morfologii [budowy] i strategii polowań drugiej strony - podkreśla Eduardo Sampaio, doktorant z Uniwersytetu w Lizbonie oraz Instytutu Zachowania Zwierząt Maxa Plancka. Ponieważ dochodzi do połączenia sił licznych partnerów, tworzy się złożona sieć, w której zaangażowanie i odnoszone korzyści mogą nie być zrównoważone. Daje to początek różnym mechanizmom kontroli partnera.
      Czasem ryby i ośmiornice współpracują przez ponad godzinę, przy czym poszczególne gatunki zajmują różne pozycje. Ośmiornice ścigają ofiary przemykające wokół skał i chowające się w ciasnych przestrzeniach, ryby takie jak Parupeneus cyclostomus przeszukują dno, a inne patrolują kolumnę wody.
      Okazuje się jednak, że współpraca nie zawsze przebiega korzystnie dla ryb. Między 2018 a 2019 r. podczas nurkowania w okolicach Ejlatu w Izraelu i Al-Kusajr w Egipcie naukowcy zaobserwowali 8 incydentów, podczas których ośmiornice nagle uderzały partnera.
      Widząc to po raz pierwszy, zacząłem się śmiać i prawie zadławiłem się automatem oddechowym - opowiada Sampaio.
      Ryba może zostać zepchnięta na obrzeża grupy albo w ogóle dostaje się poza nią. Czasem po chwili wraca [...]. Sampaio dodaje, że choć wcześniej wiedziano, że ośmiornicom zdarza się uderzyć przy odpieraniu ataków pewnych ryb lub podczas walki o pokarm, po raz pierwszy opisano takie zachowanie w odniesieniu do polowania zbiorowego.
      W ramach studium zespół Sampaio obserwował interakcje między O. cyanea i różnymi rybami z Morza Czerwonego, np. Epinephelus fasciatus czy wariolami (Variola louti).
      Liczne obserwacje [...] sugerują, że uderzanie spełnia w relacjach międzygatunkowych konkretną funkcję. Z ekologicznego punktu widzenia dla ośmiornicy uderzanie ryby-partnera stanowi niewielki koszt energetyczny. W przypadku ryby tak już jednak nie jest.
      Naukowcy dywagują, że uderzanie ma trzymać ryby w ryzach, odpędzając je od ofiary, zmieniając ich pozycję w grupie, a nawet eliminując je z polowania.
      Czasem, w przypadkach gdy ryby nie wnoszą niczego do polowania i próbują, dosłownie, żerować na pracy innych, ośmiornica może uderzać z powodu zwykłego współzawodnictwa.
      Sampaio dodaje, że choć sojusze międzygatunkowe mogą być korzystne dla obu stron, nie oznacza to wcale, że nie zostaną zerwane, gdy nadarzy się okazja. Mimo współpracy, każdy z partnerów zawsze będzie próbował maksymalizować swoje korzyści. W sytuacji kiedy ofiara jest łatwo dostępna, ośmiornica wydaje się stosować uderzenia jako metodę kontrolowania zachowania partnera [...].
      W 2 przypadkach stwierdzono, że uderzanie miało miejsce nawet wtedy, gdy nie wydawało się mieć związku z próbą zapewnienia sobie ofiary. Możliwe są tu dwa scenariusze. W pierwszym ośmiornica całkowicie ignoruje korzyści i uderzanie jest złośliwym zachowaniem, które ma wytworzyć koszty dla ryb. W drugim scenariuszu uderzenie jest [natomiast] formą agresji z odroczonymi korzyściami, np. [...] karą; chcąc promować współpracę podczas przyszłych zdarzeń, ośmiornica uderza, ponosząc niewielkie koszty (koszt dla partnera jest już jednak znaczący).
      Jak jest naprawdę, wyjaśnić mogą dopiero kolejne badania. Szczegółowe analizy ilościowe polowań zbiorowych mogą pomóc w rozważeniu różnych pytań ekologicznych, np. kwestii istnienia uprzywilejowanych relacji między ośmiornicami i konkretnymi rybimi partnerami (w ocenie, czy niektóre gatunki bądź osobniki są uderzane częściej niż pozostałe).
      Chcemy zrozumieć, jak w kontekście całej grupy wcześniejsze interakcje między zwierzętami mogą prowadzić do uderzenia [danej] ryby i co się później zmienia.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Konrad Steffen, jeden z najwybitniejszych klimatologów, pionier badań nad wpływem zmian klimatu na Grenlandię, zginął w wypadku podczas wyprawy badawczej. Steffen był dyrektorem Szwajcarskiego Federalnego Instytutu Badań nad Lasem, Śniegiem i Krajobrazem. Od ponad 40 lat zajmował się badaniami klimatu, skupiając się głównie na Arktyce i Antarktyce.
      Naukowiec zginął w wieku 68 lat w pobliżu stacji badawczej „Swiss Camp”, którą założył przed ponad 30 laty. Steffen wpadł do lodowej rozpadliny i utonął w lodowatej wodzie. Szczeliny takie stanowią poważna, znane ryzyko. Z powodu opadów śniegu i silnego wiatru uczony nie zauważył jednej z nich.
      Ryan R. Neely III, klimatolog z University of Leeds, który studiował pod kierunkiem Steffena mówi, że w regionie, w którym Szwajcar założył stację szczeliny nie występowały. Jednak globalne ocieplenie doprowadziło do tego, że zaczęły się pojawiać. Wygląda na to, że stał się ofiarą globalnego ocieplenia, dodał.
      Steffen każdej wiosny wracał do swojego obozu, by prowadzić tam badania. Czasami musiał go odbudowywać po ciężkiej zimie.
      Naukowiec urodził się w 1952 roku, a w 1984 obronił doktorat na słynnej ETH Zurich. W 1990 roku został profesorem klimatologii na University of Colorado w Boulder i dyrektorem Cooperative Institute for Research in Environmental Sciences (CIRES). W 2012 roku opuścił USA i przyjął posadę dyrektora Szwajcarskiego Federalnego Instytutu Badań nad Lasem, Śniegiem i Krajobrazem. Piastował też stanowisko profesora w ETH Zurich i Szwajcarskim Instytucie Technologicznym w Lozannie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...