Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Turbulencje są zmorą zarówno inżynierów, jak i osób podróżujących czy pilotujących samoloty. Zespół Dimitrisa Lagoudasa z Texas A&M University skonstruował rodzaj powłoki, która pod wpływem chaotycznych ruchów powietrza przyjmuje odpowiednio pofalowany kształt. Podobny trik, tyle że w wodzie, stosują delfiny (Smart materials and structures).

Tego rodzaju powłoka zmniejszyłaby turbulencje nie tylko w samolotach, ale także w łodziach podwodnych. Odpowiednie pofalowanie wytłumia ruch cząsteczek gazu lub cieczy. Wbrew pozorom odnalezienie odpowiedniej formy wcale nie jest proste. Powierzchnia skrzydła lub burty musi przyjąć kształt idealny, to znaczy wymuszany przez napierające na nią siły. Dodatkowo żądana forma zmienia się wraz z prędkością.

A jak robią to delfiny? By zredukować "rzucanie" w czasie pływania, marszczą skórę. Dzięki temu woda przestaje przywierać do ich ciała.

Wzorując się na naturze, Amerykanie najpierw przeprowadzili odpowiednie wyliczenia, potem postanowili przetestować prototyp powłoki. Pod aktywnie reagującą "skórą" znajdują się specjalne piezoceramiczne nóżki. Wydłużają się one pod wpływem działania pola elektrycznego. Kontrolując jego parametry, ekipa Lagoudasa może uzyskać konfigurację powłoki, która odpowiada długości oraz amplitudzie fali działającej na powierzchnię materiału i w ten sposób wyeliminować wstrząsy. Powstające wybrzuszenie może mieć do 30 mikrometrów wysokości. Othon Rediniotis, jeden z członków zespołu, podkreśla, że drgania powłoki zmniejszono aż o połowę.

Wg Lagoudasa, wynalazek jego zespołu sprawdzi się najlepiej w łodziach podwodnych. Wykorzystanie go w samolotach będzie wymagało wyeliminowania wielu przeszkód. Samolot porusza się z większą prędkością, dlatego powstające fale muszą mieć większą częstotliwość.

Na razie "skórę" przetestowano jedynie w warunkach laboratoryjnych. Przed zaimplementowaniem w prawdziwej flocie, morskiej czy powietrznej, musi być całkowicie niezawodna.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

CIekawe, czy nie dałoby rady stworzyć materiału, którym oblewałoby się kadłub,a następnie umieszczało go w "tunelu hydrodynamicznym", że tak to ujmę, bo nie wiem, jak się takie urządzenie nazywa profesjonanie (symulator płynięcia łodzią podwodną). W tym czasie powłoka nabierałaby kształtu wymuszanego przez wodę, a następnie stopniowo sztywniała, zapamiętując optymalny kształt.

 

Takie tam sobie gadanie laika, ale być może taki wynalazek miałby sens ;) Oczywiście taki materiał nie byłby w stanie dynamicznie adaptować się do warunków przepływu wody (chociaż gdyby był po zastygnięciu nieco plastyczny... ;) ), ale kto wie...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak właśnie się to robi - i odnośne urządzenie tak się właśnie nazywa. Zaczęło się w lotnictwie, jako tunel aerodynamiczny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No proszę, zabawne ;) Nawet nie wiedziałem, że taki myk się stosuje ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
A jak robią to delfiny? By zredukować "rzucanie" w czasie pływania, marszczą skórę. Dzięki temu woda przestaje przywierać do ich ciała

 

Po godzinie siedzenia w wannie też skóra sie marszczy ;D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Jajka, które w innym razie zostałyby wyrzucone, można wykorzystać jako podstawę taniej powłoki ochronnej do owoców i warzyw. Jak podkreślają naukowcy z Rice University, cienka powłoka rozwiązuje sporo problemów producentów, konsumentów i środowiska.
      Autorzy artykułu z pisma Advanced Materials wyliczają, że roczna produkcja jaj w USA przekracza 7 mld; producenci odrzucają 3% z nich, dlatego ponad 200 mln trafia ostatecznie na wysypiska.
      Ograniczanie niedoborów żywności bez uciekania się do modyfikacji genetycznych, niejadalnych powłok lub dodatków chemicznych jest ważne dla ekologicznego stylu życia - podkreśla Pulickel Ajayan.
      Jajeczna warstwa jest jadalna, opóźnia utratę wody, zapewnia ochronę antydrobnoustrojową i jest w dużej mierze nieprzenikalna dla pary wodnej i gazów (zapobiega to przedwczesnemu dojrzewaniu). Powłokę bazującą na naturalnych składnikach można spłukać wodą. Jeśli ktoś wykazuje nadwrażliwość na składniki powłoki albo ma alergię na jaja, może z łatwością wyeliminować warstwę - opowiada Seohui Jung.
      Białko (albuminy) i żółtko jaja stanowią blisko 70% powłoki. Reszta to głównie nanomateriały celulozowe, które stanowią barierę dla wody i zapobiegają wysychaniu, a także odrobina antydrobnoustrojowej kurkuminy oraz gliceryny dla elastyczności.
      Białko, które jest złożone przede wszystkim z albumin (~54%), pozwala uzyskać wytrzymałą, jadalną warstwę. Poli(albumina) jest jednak łamliwa, stąd dodatek gliceryny, która ma pomóc w powlekaniu bez pęknięć obiektów o nieregularnych kształtach, czyli np. owoców i warzyw. Gliceryna jest jednak hydrofilowa i pęcznieje w wilgotnych środowiskach. Mając to na uwadze, Amerykanie pomyśleli o zastosowaniu niewielkiej ilości bogatego w kwasy tłuszczowe hydrofobowego żółtka. Kurkumina ma z kolei właściwości antybakteryjne, przeciwgrzybiczne i zapobiega tworzeniu biofilmów. Nanokryształy celulozy (CNCs) obniżają przepuszczalność powłoki dla wody i gazów i zapewniają mechaniczne wzmocnienie.
      Testy laboratoryjne powlekanych truskawek, awokado, bananów i innych owoców wykazały, że zachowywały one świeżość o wiele dłużej niż owoce kontrolne. Testy ściskania zademonstrowały, że powleczone owoce są znacząco sztywniejsze i twardsze. Stwierdzono także, że powłoka zatrzymuje wodę w środku, spowalniając dojrzewanie.
      Analiza samodzielnych filmów wykazała, że są one niezwykle elastyczne i odporne na pękanie. Dalsze testy zademonstrowały, że powłoka jest nietoksyczna (stosowano hodowle in vitro komórek ludzkiej linii komórkowej Panc02 z różnymi stężeniami powłoki). Na podstawie testów rozpuszczalności stwierdzono, że zmywaniu ulega nawet grubsza niż zwykle powłoka (o grubości 100 µm, w porównaniu do zwykłej grubości 23–33 µm). Płukanie wodą przez kilka minut prowadzi do całkowitego jej rozłożenia - zaznacza Ajayan.
      Badacze dopracowują skład powłoki i rozważają inne materiały źródłowe. Wybraliśmy białka jaj, ponieważ marnuje się bardzo dużo jaj, ale to nie oznacza, że nie można wykorzystać czegoś innego - wyjaśnia Muhammad Rahman. Jung dodaje, że zespół testuje białka, które można wyekstrahować z roślin.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Gdy piorun uderzy w samolot, pilot powinien jak najszybciej wylądować, by można było sprawdzić ewentualne uszkodzenia maszyny. Na pierwszym planie jest tutaj stawiane bezpieczeństwo, jednak bardzo często maszyna wychodzi z takiego zdarzenia bez szwanku, a cała procedura powoduje spore koszty i opóźnienia.
      Najnowsze badania sugerują, że najlepszym sposobem na zmniejszenie ryzyka uderzenia pioruna w samolot może być... dodanie ładunku elektrycznego na jego powierzchni.
      Podczas lotu na powierzchni samolotu gromadzą się dodanio lub ujemnie naładowane jony. Szczególnie dużo gromadzi się ich na dziobie, końcówkach skrzydeł i statecznika. Jeśli pojawi się duża różnica w ładunkach zanim samolot wleci w naładowany obszar atmosfery, jony mogą przepłynąć wzdłuż poczycia i zamknąć obwód z chmurami prowadząc do pojawienia się wyładowania.
      W 2018 roku inżynier Carmen Guerra-Garcia z MIT i jej sudent Colin Pavan, przeprowadzili obliczenia, z których wynikało, że aby zapobiec takim wydarzeniom należy dodać do poszycia samolotu ujemne ładunki elektryczne. Teraz oboje przetestowali model samolotu z umieszczonym na pokładzie generatorem. Badali swój model w różnych warunkach, sprawdzając, jak rozkładają się ładunki elektryczne i co się z nimi dzieje.
      Badania potwierdziły, że przepływ jonów prowadzi do zainicjowania wyładowań elektrycznych. Potwierdziły też, że dodanie ujemnych ładunków pomaga w uniknięciu takich zjawisk.
      Naładowanie samolotu brzmi jak pomysł szaleńca, ale dodanie ładunków ujemnych zapobiega gromadzeniu się ładunków dodatnich, co z kolei może zapobiec pojawieniu się wyładowania, mówi inżynier Pavlo Kochkin z Uniwersytetu w Bergen. Od lat zajmuje się on problematyką wyładowań elektrycznych na powierzchni samolotów. Teraz, zainspirowany badaniami naukowców z MIT, tworzy specjalny symulator, w którym uwzględni różne poziomy naelektryzowania powietrza i zawartość pary wodnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      BAE Systems wyprodukowało bezzałogowy ultralekki samolot (UAV), który może konkurować z satelitami czy dronami. PHASA-35 (Persistent High-Altitude Solar Aircraft) może pochwalić się skrzydłami o rozpiętości 35 metrów, a więc dorównującej rozpiętości skrzydeł Boeinga, ale waży przy tym 150 kg, w tym 15 kg stanowi ładunek. Samolot został po raz pierwszy oblatany 10 lutego na poligonie australijskich sił powietrznych Woomera.
      Latał przez nieco mniej niż godzinę. To jednak wystarczyło do przetestowania jego aerodynamiki, autopilota i manewrowości. Wcześniej testowaliśmy te elementy na mniejszych modelach samolotu, więc większość problemów już poprawiliśmy,mówi Phil Varty z BAE Systems.
      Prototyp pokryty jest ogniwami fotowoltaicznymi firmy MicroLink Devices. Ich producent twierdzi, że skuteczność konwersji paneli sięga 31%.
      Na potrzeby testu tylko część skrzydeł pokryliśmy panelami. Urządzenia te o grubości kartki papieru generowały 4 kW. W ostatecznej wersji samolotu panele umieścimy na całej powierzchni skrzydeł i dostarczą one 12 kW, zapewnia Varty.
      Energia słoneczna napędza dwa silniki elektryczne i zasila zestaw ponad 400 akumulatorów, które pozwalają samolotowi na lot w nocy. Jak mówi Varty, akumulatory – w przeciwieństwie do paneli słonecznych – nie są ostatnim krzykiem techniki. Firma postawiła na znane, niezbyt wydajne i tanie rozwiązanie, podobne do tego, jakie możemy spotkać w smartfonach. Chodzi o to, żeby łatwo można było wymienić akumulatory na nowe, gdy pojawi się lepsza sprawdzona wersja.
      Przedstawiciele BAE Systems zauważają też, że pomimo tego, iż test samolotu był prowadzony latem w Australii, to pojazd zaprojektowano tak, by mógł latać podczas najmniej sprzyjającej pory roku – przesilenia zimowego. Dlatego też PHASA-35 może potencjalnie pozostawać w powietrzu nieprzerwanie przez cały rok. Będzie latał w stratosferze na wysokości około 20 kilometrów. Tam jest niewiele wiatru, nie chmur i turbulencji, mówi Varty.
      Samolot może być sterowany z Ziemi. Jest też wyposażony w autopilota, któremu można wgrać wcześniej przygotowaną trasę. Urządzenie może pozostawać w określonym punkcie lub wykonywać złożone manewry. Można go wyposażyć w aparaty fotograficzne, czujniki i różnego rodzaju urządzenia śledzące. Dlatego też PHASA-35 w wielu zastosowaniach może zastąpić drony czy satelity.
      Najlepsze wojskowe drony mogą pozostawać w powietrzu maksymalnie przez 3 doby. Z kolei satelity muszą utrzymać prędkość co najmniej 7 km/s, by pozostać na wyznaczonej orbicie. Samolot BAE Systems będzie mógł bez przerwy monitorować określone miejsce, a dzięki temu, że znajduje się niżej nad Ziemią, dostarczy dokładniejszych obrazów. Jednak jego przydatność i czas pozostawania w powietrzu będą w dużej mierze zależały od masy ładunku. Osobną kwestią jest odporność na awarie przez cały rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Odkryto mechanizm obronny, który pozwala skórze aktywnie zabijać bakterie. Centralną rolę spełnia w nim interleukina-6 (IL-6). Jej metodę działania będzie można wykorzystać do zapobiegania zakażeniom ran.
      Kolonizacja ran skóry przez bakterie lub inne patogeny może prowadzić do ciężkiego stanu zapalnego. W najgorszych przypadkach kończy się to sepsą albo amputacją. Ze względu na rosnącą lekooporność spada liczba dostępnych opcji terapeutycznych. Ostatnio jednak zespół dr. Franka Siebenhaara z Charité w Berlinie zidentyfikował nowy endogenny mechanizm, który może pomóc w zapobieganiu infekcjom ran bez stosowania antybiotyków.
      Niemcy oceniali, w jakim stopniu będące elementem układu immunologiczne komórki tuczne (mastocyty) są zaangażowane w odpowiedź skóry gospodarza na bakteryjne zakażenie rany i gojenie ran.
      Posługując się modelem zwierzęcym (szczepami myszy), akademicy badali wpływ braku mastocytów na gojenie się ran po zakażeniu pałeczkami ropy błękitnej (Pseudomonas aeruginosa). Okazało się, że pod nieobecność komórek tucznych 5. dnia po infekcji liczba bakterii obecnych w ranie była 20-krotnie wyższa. Wskutek tego zakażona rana zamykała się kilka dni dłużej.
      Autorzy raportu z pisma PNAS wyjaśniają, że "zabójcze" działanie mastocytów jest wynikiem uwalniania interleukiny-6. Stymuluje ona keratynocyty do wydzielania peptydów antydrobnoustrojowych.
      Nasze badanie pokazało naturę i zakres zaangażowania komórek tucznych w skórny mechanizm obrony przed bakteriami. Pomaga nam to lepiej zrozumieć znacznie mastocytów w ludzkim organizmie; wiemy już, że ich rola wykracza poza bycie skromnymi mediatorami reakcji alergicznych.
      Pogłębiając wiedzę nt. IL-6 i jej kluczowych funkcji, Niemcy stwierdzili, że podanie interleukiny-6 przed zakażeniem rany skutkowało lepszą obroną przed bakteriami. Wyniki udało się powtórzyć w ludzkiej tkance. Teoretycznie można by rozważyć podawanie IL-6 bądź substancji o podobnym mechanizmie działania w ramach zapobiegania infekcjom ran.
      W kolejnym kroku ocenimy funkcje mastocytów oraz IL-6 u pacjentów z chronicznymi problemami z gojeniem ran.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Chcąc młodziej wyglądać, ludzie sięgają po kremy albo stosują wypełniacze. Niestety, kremy nie wnikają do głębszych warstw skóry, a zastrzyki z wypełniaczami trzeba powtarzać i bywają one bolesne. Ostatnio jednak naukowcy z USA opracowali bezigłową terapię egzosomową, która doskonale wygładza zmarszczki u myszy wystawianych na oddziaływanie ultrafioletu.
      Gdy komórki skóry się starzeją, tracą zdolność do namnażania i produkowania kolagenu, głównego białka strukturalnego skóry. Niedawno akademicy odkryli, że potraktowanie ludzkich komórek w szalce egzosomami komórek macierzystych zwiększa ilość kolagenu i wywołuje inne odmładzające skutki.
      Egzosomy to wyspecjalizowane pęcherzyki transportujące, tworzone na szlakach wydzielania i wchłaniania komórkowego. Transportują one bioaktywne lipidy, mRNA czy białka, dlatego nazywa się je niekiedy "fizjologicznymi liposomami".
      Zespół Ke Chenga z Uniwersytetu Stanowego Karoliny Północnej postanowił sprawdzić, czy poddanie mysiej skóry działaniu egzosomów ludzkich fibroblastów skórnych (ang. human dermal fibroblasts, HDFs) może zmniejszyć zmarszczki i przywrócić różne młodzieńcze cechy. By uniknąć wstrzykiwania egzosomów, akademicy przetestowali bezigłowe urządzenie, które do wprowadzania leków w głąb skóry wykorzystuje strumień powietrza.
      W ramach eksperymentu autorzy artykułu z pisma ACS Nano wystawiali myszy na oddziaływanie promieniowania UVB, które przyspiesza starzenie i prowadzi do powstawania zmarszczek. Po 8 tygodniach ekspozycji niektórym gryzoniom podano egzosomy HDFs. Po 3 tygodniach zmarszczki zwierząt z grupy eksperymentalnej były cieńsze i bardziej powierzchowne niż u myszy z grupy kontrolnej i u gryzoni leczonych podawanym miejscowo kwasem retinowym (to standardowy preparat antystarzeniowy).
      Co ważne, skóra myszy, które dostały egzosomy, była grubsza, a także wykazywała słabszy stan zapalny i wzmożoną produkcję kolagenu (porównań dokonywano do myszy, którym nie podano egzosomów).

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...