-
Similar Content
-
By KopalniaWiedzy.pl
Większość ludzi korzysta z urządzeń elektronicznych. Gdy zaczynają one szwankować, bądź gdy pojawi się nowszy model, znaczna część użytkowników bez zastanowienia wyrzuca stare urządzenie i zastępuje je nowym. Dlatego śmieci elektroniczne są najszybciej rosnącą kategorią odpadów. Każdego roku wyrzucamy około 40 milionów ton elektroniki. A problem narasta, gdyż im więcej elektroniki wokół nas – a np. w przeciętnym amerykańskim gospodarstwie domowym znajdują się już 24 urządzenia elektroniczne – tym krótszy średni czas użytkowania urządzenia. Naukowcy z University of Chicago postanowili sprawdzić, czy można zmienić relacje pomiędzy człowiekiem a gadżetem poprzez dosłowne... ożywienie gadżetu.
Eksperyment przywodzi na myśl popularną zabawkę tamagotchi. Jasmine Lu i profesor Pedro Lopes wykorzystali śluzowca z gatunku Physarum polycephalum do pomocy w zasilaniu smartwatcha. Urządzenie w pełni działa tylko wówczas, gdy przewodzący prąd organizm jest zdrowy. A to wymaga dbałości ze strony użytkownika.
Zmusiliśmy w ten sposób użytkowników do przemyślenia swojego związku z urządzeniem na wiele różnych sposobów. Gdy rozmawialiśmy z nimi o ich doświadczenia ze standardowymi smartwatchami, opaskami i inną ubieralną elektroniką, ludzie mówili, że wykorzystują te urządzenia utylitarnie, w konkretnym celu. Jednak w przypadku naszego urządzenia to podejście się zmieniło, bardziej odczuwali tutaj dwukierunkowy związek i przywiązanie, gdyż musieli opiekować się żywym organizmem. Czuli, że nie mogą go wyrzucić czy zamknąć w szufladzie, mówi Jasmine Lu.
Zbudowane przez Lu zegarki pokazują godzinę i mierzą puls właściciela. Jednak druga z ich funkcji jest całkowicie zależna od kondycji śluzowca. Organizm znajduje się w jednej z części specjalnego pojemnika. Użytkownik musi regularnie odżywiać go wodą i płatkami owsianymi. Dzięki temu śluzowiec rozrasta się i dociera do drugiej części pojemnika. Powstaje obwód elektryczny, który aktywuje funkcję pomiaru tętna. Śluzowiec, gdy nie jest odpowiednio odżywiany, przestaje się rozrastać, wchodzi w stan uśpienia, w którym może pozostawać całymi latami.
W eksperymencie wzięło udział 5 osób, które nosiły urządzenie przez dwa tygodnie. W ciągu pierwszych 7 dni zadaniem użytkowników było dbanie o śluzowca tak, by doszło do aktywowania funkcji pomiaru tętna. W drugim tygodniu poproszono ich, by zaprzestali karmienia, by śluzowiec wysechł, a pomiar tętna się wyłączył. Przez cały czas trwania eksperymentu użytkownicy mieli opisywać swoje myśli i odczucia względem urządzenia w dzienniczku, odpowiadali też na pytania eksperymentatorów.
Okazało się, że użytkownicy czyli się mocno związani z zegarkiem. Niektórzy stwierdzili, że traktowali go jak domowego pupila, nadali mu imię, a gdy byli chorzy, prosili kogoś innego, by karmił śluzowca. Przyznali, że ich związek z organizmem był silniejszy niż z wirtualnymi bytami, jak tamagotchi czy Simy. Jeszcze bardziej zaskakujące była reakcja uczestników eksperymentu na prośbę, by przestali karmić organizm. Zaczęli oni odczuwać winę, a nawet żałobę. Byli w szoku. Niemal każdy upewniał się, czy na pewno ma to zrobić, mówi Lopes.
Lu i Lopes zaprezentowali wyniki swoich badań podczas 2022 ACM Symposium on User Interface Software and Technology, jednej z najważniejszych konferencji dotyczących interakcji ludzi i komputerów. Uczeni mają nadzieję, że zainspiruje to przemysł do tworzenia kreatywnych urządzeń zasilanych dzięki śluzowcom i zachęci projektantów do tworzenia technologii, których ludzie mniej chętnie będą się pozbywali i nawiązywali z nimi silniejsze więzi. Chcą, by dzięki temu więcej osób oddawało zepsute urządzenia do naprawy, a nie pozbywało się ich, generując kolejne miliony ton odpadów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Podzespoły elektroniczne tworzy się integrując olbrzymią liczbę urządzeń na płaskim podłożu. Przemysł używa i doskonali tę technikę od dziesięcioleci. Jednak pojawia się coraz większe zapotrzebowanie na podzespoły elektroniczne o zakrzywionych kształtach, które byłyby lepiej dostosowane do zastosowań biologicznych czy medycznych. Z pomocą może przyjść tutaj... rafinowany cukier.
Gary Zabow z amerykańskich Narodowych Instytutów Standardów i Technologii (NIST) przygotowywał dla kolegów z laboratorium biomedycznego mikroskopijne magnetyczne kropki. Umieszczał je na podłożu, a następnie zabezpieczał cukrem. Naukowcy z laboratorium biomedycznego po prostu zmywali ochronną warstwę cukru wodą i mogli prowadzić swoje badania z użyciem magnetycznych kropek, na których nie pozostawały fragmenty plastiku czy związków chemicznych.
Niedawno Zabow przez przypadek zostawił jeden z zestawów kropek w zlewce, którą podgrzał. Cukier rozpuścił się i utworzył gumowatą strukturę. Naukowiec postanowił posprzątać bałagan i zmyć cukier wodą. Tym razem okazało się, że magnetyczne kropki zniknęły. Jednak nie zmyła ich woda, ale zostały przeniesione na podłoże, któremu nadały tęczową poświatę. To ta tęcza mnie zaintrygowała, mówi Zabow. Wskazywała ona, że mikrokropki zachowały ułożenie, jakie im nadał.
Naukowiec zaczął się zastanawiać, czy zwykły cukier stołowy może posłużyć do tworzenia układów elektronicznych na niekonwencjonalnych podłożach. Jego badania zaowocowały artykułem w Science.
Bezpośrednie nadrukowywanie elementów elektronicznych na docelowe podłoże jest trudne, więc nadruki są przenoszone za pomocą elastycznych taśm czy plastikowego podłoża. Jednak podłoża takie nie są na tyle elastyczne, by można było swobodnie dostosowywać je do dowolnych kształtów. Ponadto przenoszenie za pomocą tworzyw sztucznych pozostawia resztki plastiku i związków chemicznych, które nie powinny znaleźć się w elektronice stosowanej w biomedycynie. Istnieją płynne techniki, gdy pożądany wzór znajduje się na powierzchni płynu, a podłoże, na którym ma się docelowo znaleźć, jest przez płyn przepychane. Jednak w takim wypadku trudno jest zachować dużą precyzję.
Zabow odkrył, że połączenie skarmelizowanego cukru i syropu klonowego pozwala na osiągnięcie tego, czego chcemy. Cukier rozpuszczony w niewielkiej ilości wody może zostać wylany na przygotowany nadruk. Gdy się utwardzi, całość można podnieść z przytwierdzonym doń wzorem, nałożyć na nowe podłoże i rozpuścić. Najlepsze wyniki daje połączenie cukru i syropu klonowego, gdyż zachowuje wysoką lepkość i pozwala na odtworzenie wzoru na zakrzywionych powierzchniach. Następnie cukier można zmyć, a pozostawiając na docelowym podłożu podzespoły elektroniczne ułożone według pożądanego wzorca.
Podczas swoich eksperymentów Zabow udowodnił, że w ten sposób można np. nakładać nadruki na ostrze pineski czy nadrukować wyraz skrótowiec na ludzkim włosie. Wykazał też, że magnetyczny dysk o średnicy 1 mikrometra można przenieść na włókno trojeści. Odkrywca nazwał nową technikę REFLEX (REflow-drive FLExible Xfer). Pozostaje jeszcze sporo do zrobienia, ale RELEX daje nadzieję na wykorzystanie nowych materiałów i mikrostruktur w elektronice, optyce czy inżynierii biomedycznej.
Przemysł półprzewodnikowy wydał miliardy dolarów na udoskonalenie elektroniki, której dzisiaj używamy. Czyż nie byłoby wspaniale, gdyby inwestycje te udało się wykorzystać w nowych zastosowaniach za pomocą czegoś tak prostego i niedrogiego jak kawałek rafinowanego cukru?, cieszy się Zabow.
« powrót do artykułu -
By KopalniaWiedzy.pl
Anna Tomańska, studentka Wydziału Medycyny Weterynaryjnej Uniwersytetu Przyrodniczego we Wrocławiu (UPWr), bada komunikację pszczół. Chce sprawdzić, jakie dźwięki wydają, gdy są zadowolone, zaniepokojone czy chore. Interesuje się też wykorzystaniem nowoczesnych urządzeń w hodowli tych owadów. Jej wnioski mogą być bardzo przydatne dla pszczelarzy.
Tomańska interesuje się pszczelarstwem od 2 lat. Sporo zawdzięcza w tym zakresie opiekunowi projektu, prof. UPWr, dr. hab. Pawłowi Chorbińskiemu. Pan profesor to autorytet w dziedzinie pszczelarstwa i potrafi skutecznie zarażać swoją pasją – podkreśla studentka.
Już wcześniej interesowałam się bioakustyką. Wspólnie z inżynierem dźwięku i producentem radiowym z Wielkiej Brytanii Philipem Millem napisaliśmy artykuł o nagrywaniu dźwięków przyrody i technologiach. To wtedy, w naszych rozmowach, po raz pierwszy pojawił się temat pszczół. Pomyślałam, że dźwięki z wnętrza ula mogą być nie tylko fascynujące, ale niezwykle ciekawe pod kątem testowania nowoczesnych urządzeń w hodowli tych owadów.
Gdy o pomyśle dowiedział się prof. Chorbiński, namówił Tomańską, by zgłosiła się do programu stypendialnego "Magistrant wdrożeniowy na UPWr".
Studentka wykorzystała drewniane ule wielkopolskie. Wygłuszyła je za pomocą pianki akustycznej, a następnie zainstalowała elektronikę (czujniki ciepła i wilgotności). Ule znajdują się w powstającej właśnie nowoczesnej pasiece w Górach Sowich.
Tomańska przez kilka miesięcy nagrywała dźwięki z ula, a także rejestrowała zmiany temperatury i wilgotności.
Pszczoły nie tylko bzyczą, w ulu słychać też np. ich tupanie oraz komunikację. Ta ostatnia jest fascynująca, dlatego chcemy sprawdzić, czym będzie różnić się, kiedy np. w ulu będzie matka z mniejszą/większą liczbą robotnic, sama matka albo dwie matki. Chcemy wyselekcjonować dźwięki, jakie wydają spokojne pszczoły, od tych, które słychać, gdy są zaniepokojone - tłumaczy studentka. Podobnie z temperaturą: w jakich sytuacjach spada, a kiedy rośnie. Analiza i wnioski z tych badań z pewnością pomogą pszczelarzom. Będą mogli na odległość, za pomocą elektroniki, zapobiegać niebezpiecznym sytuacjom w pasiece - dodaje.
Kilkunastominutowego audioeseju o pszczołach miodnych, który powstał w ramach projektu "Magistrant wdrożeniowy", można wysłuchać dzięki Radiu Warroza.
Owocem współpracy Tomańskiej i Milla jest ebook "Bioakustyka". Jak podkreślono w opisie książki, jest to krótki przewodnik, który pomoże Ci postawić pierwsze kroki w nagrywaniu przyrody. W listopadzie zeszłego roku w paśmie gościnnym Radia Kapitał zadebiutowała też ich audycja o Borach Tucholskich.
« powrót do artykułu -
By KopalniaWiedzy.pl
Rozwiązaniem problemu pomiędzy szybkością działania komputerów kwantowych a koherencją kubitów może być zastosowanie dziur, twierdzą australijscy naukowcy. To zaś może prowadzić do powstania kubitów nadających się do zastosowania w minikomputerach kwantowych.
Jedną z metod stworzenia kubitu – kwantowego bitu – jest wykorzystanie spinu elektronu. Aby uczynić komputer kwantowy tak szybkim, jak to tylko możliwe, chcielibyśmy mieć możliwość manipulowania spinami wyłącznie za pomocą pola elektrycznego, dostarczanego za pomocą standardowych elektrod.
Zwykle spiny nie reagują na pole elektryczne, jednak z niektórych materiałach spiny wchodzi w niebezpośrednie interakcje z polem elektrycznym. Mamy tutaj do czynienia z tzw. sprzężeniem spinowo-orbitalnym. Eksperci zajmujący się tym tematem obawiają się jednak, że gdy taka interakcja jest zbyt silna, wszelkie korzyści z tego zjawiska zostaną utracone, gdyż dojdzie do dekoherencji i utraty kwantowej informacji.
Jeśli elektrony zaczynają wchodzić w interakcje z polami kwantowymi, które im aplikujemy w laboratorium, są też wystawione na niepożądane zmienne pola elektryczne, które istnieją w każdym materiale. Potocznie nazywamy to „szumem”. Ten szum może zniszczyć delikatną informację kwantową, mówi główny autor badań, profesor Dimi Culcer z Uniwersytetu Nowej Południowej Walii.
Nasze badania pokazują jednak, że takie obawy są nieuzasadnione. Nasze teoretyczne badania wykazały, że problem można rozwiązać wykorzystując dziury – które można opisać jako brak elektronu – zachowujące się jak elektrony z ładunkiem dodatnim, wyjaśnia uczony.
Dzięki wykorzystaniu dziur kwantowy bit może być odporny na fluktuacje pochodzące z tła. Co więcej, okazało się, że punkt, w którym kubit jest najmniej wrażliwy na taki szum, jest jednocześnie punktem, w którym działa on najszybciej. Z naszych badań wynika, że w każdym kwantowym bicie utworzonym z dziur istnieje taki punkt. Stanowi to podstawę do przeprowadzenia odpowiednich eksperymentów laboratoryjnych, dodaje profesor Culcer.
Jeśli w laboratorium uda się osiągnąć te punkty, będzie można rozpocząć eksperymenty z utrzymywaniem kubitów najdłużej jak to możliwe. Będzie to też stanowiło punkt wyjścia do skalowania kubitów tak, by można było je stosować w minikomputerach.
Wiele wskazuje na to, że takie eksperymenty mogą zakończyć się powodzeniem. Profesor Joe Salfi z University of British Columbia przypomina bowiem: Nasze niedawne eksperymenty z kubitami utworzonymi z dziur wykazały, że w ich wypadku czas koherencji jest dłuższy, niż się spodziewaliśmy. Teraz widzimy, że nasze obserwacje mają solidne podstawy teoretyczne. To bardzo dobry prognostyk na przyszłość.
Praca Australijczyków została opublikowana na łamach npj Quantum Information.
« powrót do artykułu -
By KopalniaWiedzy.pl
Znajdujący się na Biegunie Południowym wielki detektor neutrin IceCube zarejestrował wysokoenergetyczne wydarzenie, które potwierdziło istnienie zjawiska przewidzianego przed 60 laty i wzmocniło Model Standardowy. Wydarzenie to zostało wywołane przez cząstkę antymaterii o energii 1000-krotnie większej niż cząstki wytwarzane w Wielkim Zderzaczu Hadronów (LHC).
Ponad 4 lata temu, 8 grudnia 2016 roku wysokoenergetyczne antyneutrino elektronowe wpadło z olbrzymią prędkością w pokrywę lodową Antarktydy. Jego energia wynosiła gigantyczne 6,3 petaelektronowoltów (PeV). Głęboko w lodzie zderzyło się ono z elektronem, doprowadzając do pojawienia się cząstki, która szybko rozpadła się na cały deszcz cząstek. Ten zaś został zarejestrowany przez czujniki IceCube Neutrino Observatory.
IcCube wykrył rezonans Glashowa, zjawisko, które w 1960 roku przewidział późniejszy laureat Nagrody Nobla, Sheldon Glashow. Pracujący wówczas w Instytucie Nielsa Bohra w Kopenhadze naukowiec opublikował pracę, w której stwierdził, że antyneutrino o odpowiedniej energii może wejść w interakcje z elektronem, w wyniku czego dojdzie do pojawienia się nieznanej jeszcze wówczas cząstki. Cząstką tą był odkryty w 1983 roku bozon W.
Po odkryciu okazało się, że ma on znacznie większą masę, niż przewidywał Glashow. Wyliczono też, że do zaistnienia rezonansu Glashowa konieczne jest antyneutrino o energii 6,3 PeV. To niemal 1000-krotnie większa energia niż nadawana cząstkom w Wielkim Zderzaczu Hadronów. Żaden obecnie działający ani obecnie planowany akcelerator nie byłby zdolny do wytworzenia tak wysokoenergetycznej cząstki.
IceCube pracuje od 2011 roku. Dotychczas obserwatorium wykryło wiele wysokoenergetycznych zdarzeń, pozwoliło na przeprowadzenie niepowtarzalnych badań. Jednak zaobserwowanie rezonansu Glashowa to coś zupełnie wyjątkowego. Musimy bowiem wiedzieć, że to dopiero trzecie wykryte przez IceCube wydarzenie o energii większej niż 5 PeV.
Odkrycie jest bardzo istotne dla specjalistów zajmujących się badaniem neutrin. Wcześniejsze pomiary nie dawały wystarczająco dokładnych wyników, by można było odróżnić neutrino od antyneutrina. To pierwszy bezpośredni pomiar antyneutrina w przepływających neutrinach pochodzenia astronomicznego, mówi profesor Lu Lu, jeden z autorów analizy i artykułu, który ukazał się na łamach Nature.
Obecnie nie jesteśmy w stanie określić wielu właściwości astrofizycznych źródeł neutrin. Nie możemy np. zmierzyć rozmiarów akceleratora czy mocy pól magnetycznych w rejonie akceleratora. Jeśli jednak będziemy w stanie określić stosunek neutrin do antyneutrin w całym strumieniu, bo będziemy mogli badać te właściwości, dodaje analityk Tianlu Yaun z Wisconsin IceCube Particle Astrophysics Center.
Sheldon Glashow, który obecnie jest emerytowanym profesorem fizyki na Boston University mówi, że aby być absolutnie pewnymi wyników, musimy zarejestrować kolejne takie wydarzenie o identycznej energii. Na razie mamy jedno, w przyszłości będzie ich więcej.
Niedawno ogłoszono, że przez najbliższych kilka lat IceCube będzie udoskonalany, a jego kolejna wersja – IceCube-Gen2 – będzie w stanie dokonać większej liczby tego typu pomiarów.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.