
Bliżej fuzji jądrowej. Padł rekord utrzymania wysokotemperaturowej plazmy w tokamaku
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Zespół europejskich, w tym polskich, fizyków poinformował o ustanowieniu rekordu energetycznego z syntezy termojądrowej. Specjaliści pracujący przy tokamaku Joint European Torus (JET) w Wielkiej Brytanii uzyskali 59 megadżuli trwałej energii z fuzji jądrowej. Wyniki są zgodne z oczekiwaniami, potwierdzają słuszność decyzji o budowie reaktora ITER i dowodzą, że fuzja może być wydajnym, bezpiecznym i niskoemisyjnym źródłem energii.
Osiągnięcie to jest wynikiem wieloletnich przygotowań zespołu naukowców EUROfusion z całej Europy. Sam rekord, a co ważniejsze, to czego nauczyliśmy się o fuzji w tych warunkach i jak to całkowicie potwierdza nasze przewidywania, pokazuje, że obraliśmy właściwą drogę, by ziścił się świat funkcjonujący w oparciu o energię z syntezy jądrowej. Jeśli jesteśmy w stanie kontrolować fuzję przez pięć sekund, możemy to robić przez pięć minut, a następnie przez pięć dni, w miarę zwiększania skali funkcjonowania urządzeń w przyszłości, powiedział Tony Donné, menedżer programu EUROfusion, w którego pracach udział bierze 4800 ekspertów i studentów z całego świata. A Bernard Bigot, dyrektor ITER, dodał, że stabilne wyładowanie deuteru z trytem na tym poziomie energetycznym, prawie na skalę przemysłową, potwierdza sens działania wszystkich zaangażowanych w fuzję na świecie. W przypadku projektu ITER wyniki JET pozwalają nam zakładać, że jesteśmy na dobrej drodze do zademonstrowania mocy syntezy jądrowej.
JET znajduje się w Culham w Wielkiej Brytanii. Został uruchomiony w 1977 roku jako przedsięwzięcie Wspólnoty Europejskiej. Prowadzone w nim badania są niezbędne do rozwoju ITER i innych elektrowni termojądrowych. JET to jedyny tokamak na świecie, w którym można zastosować taką samą mieszankę deutery i trytu (D-T), jaka będzie stosowana w ITER i elektrowniach przyszłości. Temperatura osiągana w JET jest 10-krotnie wyższa niż wewnątrz Słońca. Teraz udało się tam uzyskać również olbrzymią ilość energii. Podczas 5-sekundowego wyładowania plazmy uwolniło się 59 megadżuli energii w postaci ciepła. Tym samym JET utrzymał moc wyjściową nieco ponad 11 MW ciepła uśrednioną w ciągu pięciu sekund. Poprzedni rekord, 22 megadżule energii całkowitej, oznaczał 4,4 MW uśrednione w ciągu pięciu sekund.
Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówiła w ubiegłym roku profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
Badania nad fuzją jądrową prowadzone są na całym świecie i przywiązuje się do nich coraz większą wagę. W bieżącym roku w Wielkiej Brytanii zostanie wybrana lokalizacja dla przyszłej prototypowej elektrowni fuzyjnej, Chińczycy poinformowali o pobiciu rekordu utrzymania wysokotemperaturowej plazmy w tokamaku, prestiżowy MIT twierdzi, że już za 4 lata może powstać pierwszy reaktor fuzyjny z zyskiem energetycznym netto, a z niedawno opublikowanego raportu dowiadujemy się, że na świecie istnieje co najmniej 35 przedsiębiorstw pracujących nad fuzją jądrową. Mimo tego perspektywa powstania pierwsze komercyjnej elektrowni fuzyjnej wydaje się bardzo odległa. To raczej perspektywa dekad niż lat.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Politechniki Łódzkiej będą prowadzić badania nad systemem monitorującym wytwarzanie plazmy termojądrowej. Jak podkreślono w komunikacie prasowym uczelni, finansowanie przyznała [doktorantowi Bartłomiejowi Jabłońskiemu] europejska organizacja EUROfusion w konkursie na projekty dotyczące rozwiązania problemów naukowych związanych z fuzją termojądrową.
Opiekunami grantu są dr hab. inż. Dariusz Makowski i dr hab. inż. Wojciech Tylman. Projekt będzie realizowany we współpracy z dr. Marcinem Jakubowskim z Instytutu Fizyki Plazmy im. Maxa Plancka w Greifswaldzie, dr. Raphaelem Mitteau z centrum badań jądrowych CEA i specjalistami z International Thermonuclear Experimental Reactor (ITER).
W ramach trzyletniego grantu prowadzone będą badania naukowe nad nowymi metodami przetwarzania obrazów w czasie rzeczywistym oraz wykorzystaniem uczenia maszynowego i sieci neuronowych do ochrony i sterowania urządzeniami do wytwarzania plazmy termojądrowej. Głównym celem projektu jest opracowanie metodyki oraz algorytmów sterowania plazmą, jak również zabezpieczenia maszyny, wykorzystując obrazy z kamer termowizyjnych dla wyładowań plazmowych dłuższych niż 30 minut – wyjaśnia dr hab. inż. Dariusz Makowski.
Urządzenia, które powstaną dzięki polskim naukowcom zostaną wykorzystane zarówno w niemieckim stellaratorze Wendelstein 7-X, jak we francuskim tokamaku WEST. Wyniki prac urządzeń do obrazowania zachowania plazmy są niezwykle ważne dla rozwoju przyszłych technologii fuzyjnych. Specjaliści mają nadzieję, że dzięki temu lepiej będą rozumieli plazmę i opracują doskonalsze metody jest utrzymania i kontroli.
Reakcja termojądrowa (fuzja jądrowa) to zjawisko polegające na łączeniu się lżejszych jąder w jedno cięższe. W jej wyniku powstaje duża ilość energii. Gdyby udało się ją opanować, mielibyśmy do dyspozycji praktycznie niewyczerpane źródło taniej i bezpiecznej energii. Fuzja ma więc wiele zalet w porównaniu z reakcją rozszczepienia jąder cięższych atomów na lżejsze, którą wykorzystujemy w elektrowniach atomowych. Problem w tym, że wciąż nie potrafimy opanować reakcji termojądrowej i uzyskać z niej nadmiarowej energii, gotowej do komercyjnego wykorzystania
System monitorujący plazmę będzie zatem przydatny dla rozwoju obu konkurencyjnych technologii reaktorów jądrowych – tokamaka i stellaratora.
Bardziej znany z nich jest tokamak, którego koncepcja została stworzona w latach 50. przez radzieckich uczonych. Główna komora tokamaka ma kształt torusa, w którym za pomocą elektromagnesów tworzony jest pierścień plazmy. Przez ostatnich kilkadziesiąt lat świat kładł duży nacisk na rozwój tokamaków. Najbardziej znanym urządzeniem tego typu jest powstający we Francji międzynarodowy ITER. A wspominany tutaj WEST, a konkretnie jego wcześniejsza wersja Tore Supra, to światowy rekordzista pod względem utrzymania plazmy w tokamaku (6 minut 30 sekund).
Jedną z alternatyw dla tokamaków są stellaratory. Charakteryzuje je znacznie bardziej skomplikowana budowa, przez co nie wiązano z nimi tak wielkich nadziei jak z tokamakami. Mają jednak liczne zalety, których brak tokamakom. Przykładem stellaratora jest wspomniany tutaj Wendelstein 7-X (W7-X), w który zainwestowała też Polska. Ostatnio informowaliśmy o badaniach, które mogą spowodować, że stellaratory wyjdą z cienia tokamaków i będziemy dysponowali co najmniej dwie rzeczywiście konkurencyjnymi rozwiązaniami reaktora do fuzji jądrowej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Wielka Brytania zawęziła do 5 lokalizacji liczbę możliwych miejsc, w których zostanie zbudowana prototypowa elektrownia fuzyjna. Spherical Tokamak for Energy Production (STEP) ma rozpocząć pracę w latach 40. Ostateczna decyzja, co do jego lokalizacji zapadnie do końca 2022 roku.
Prace nad STEP trwają w Culham Centre for Fusion Energy, która jest własnością UK Atomis Energy Authority. Organizacja ta zarządza obecnie dwoma tokamakami – Mega Amp Spherical Tokamak (MAST-U) oraz Joint European Torus.
W 2019 roku brytyjski rząd przeznaczył 222 miliony funtów na stworzenie projektu elektrowni fuzyjnej korzystającej z tokamaka. Prace, w których zaangażowanych jest ponad 300 osób, mają zakończyć się w 2024 roku. W ich ramach mają powstać prototypowe części składowe, zostaną przeprowadzone badania materiałow, robotyczne oraz modelowanie komputerowe. Wszystko wskazuje na to, że pandemia nie zakłóciła harmonogramu i w pełni działająca elektrownia fuzyjna rzeczywiści zostanie wybudowana w latach 40.
Na przełomie 2020 i 2021 roku wybrano do dalszej oceny 15 potencjalnych lokalizacji elektrowni. Obecnie zawężono ten wybór do 5 miejsc, w tym 4 w Anglii i 1 w Szkocji. Ustalenie krótkiej listy lokalizacji to ważny krok naprzód. Pozwoli na długoterminowy rozwój projektu, kieruje go bardziej ku konkretnym rozwiązaniom projektowym i zaowocuje, jak mamy nadzieję, pierwszą na świecie prototypową elektrownią fuzyjną, mówi Paul Methven, dyrektor projektu STEP.
Methven zapowiada, że w kolejnym etapie prac prowadzone będą rozmowy z lokalnymi społecznościami w wybranych miejscach, by lepiej zrozumieć społeczno-ekonomiczne, komercyjne i technologiczne warunki związane z każdym z nich.
Brytyjscy specjaliści pracujący nad energetyką fuzyjną pochwalili się niedawno, że dzięki użyciu nowatorskiego diwertora – urządzenia do oczyszczania plazmy – w tokamaku MAST-U udało się aż 10-krotnie zmniejszyć ciepło odpadowe docierające do ścian reaktora.
« powrót do artykułu -
By KopalniaWiedzy.pl
Zjawiska istotne dla czarnych dziur, eksplozji supernowych i innych ekstremalnych wydarzeń kosmicznych mogą zostać odtworzone na Ziemi, twierdzą naukowcy z Pinceton University, SLAC National Accelerator Laboratory oraz Princeton Plasma Physics Laboratory. Dowodzą oni, że współczesna technologia pozwala na uzyskanie procesów kaskadowych opisywanych przez elektrodynamikę kwantową (QED cascades). Procesy takie leżą u podstaw eksplozji supernowych czy szybkich rozbłysków radiowych, w czasie których w ciągu milisekund emitowane jest tyle energii, ile Słońce emituje w ciągu kilku dni.
Kenan Qu, Sebastian Meuren i Nahaniel J. Fisch poinfornowali na łamach Physical Review Letters, o uzyskaniu pierwszego teoretycznego dowodu, że interakcja laboratoryjnego lasera z gęstym strumieniem elektronów doprowadzi do pojawienia się kaskad. Wykazaliśmy, że to, o czym sądzono, iż jest niemożliwe, w rzeczywistości jest możliwe. To zaś pokazuje, że zjawisko, którego dotychczas nie mogliśmy bezpośrednio obserwować, można uzyskać za pomocą najnowocześniejszych laserów i urządzeń do generowania strumienia elektronów, mówi główny autor artykułu, Kenan Qu.
Zderzenie silnego impulsu laserowego ze strumieniem elektronów o wysokiej energii prowadzi do powstania gęstej chmury par elektron-pozyton, które zaczynają wchodzić w interakcje. To zaś powoduje kolektywne zachowanie się plazmy, co z kolei wpływa na to, jak pary te wspólnie reagują na pola elektryczna lub magnetyczne.
Plazma, zjonizowana materia przypominająca gaz, zawiera swobodne cząstki – jony i elektrony – i stanowi około 99% widzialnego wszechświata. Napędza ona reakcje w gwiazdach, a zachodzące w niej procesy są silnie zależne od pól elektromagnetycznych.
"Poszukiwaliśmy sposobów, na odtworzenie warunków, w jakich powstaną pary elektron-pozyton o gęstości na tyle dużej, by doszło do kolektywnego zachowania się plazmy", mówi Qu. Już znacznie wcześniej wiedziano, że wystarczająco silne lasery, pola magnetyczne lub elektryczne mogą doprowadzić do pojawienia się wspomnianych procesów kaskadowych. Jednak wyliczenia pokazywały, że uzyskanie tak intensywnych promieni laserowych, pól magnetycznych i elektrycznych jest poza naszymi możliwościami.
Okazuje się, że połączenie współczesnych technologii laserowych z relatywistycznymi strumieniami elektronów wystarczy, by zaobserwować takie zjawisko, mówi profesor Nat Fisch. Kluczem jest tutaj wykorzystanie lasera, który spowolni pary elektron-pozyton tak, by ich masa spadła, przez co zwiększy się ich wpływ na częstotliwość plazmy i wzmocni kolektywne zachowania plazmy. Wykorzystanie już dostępnych technologii jest tańsze, niż próba zbudowania lasera o olbrzymiej intensywności.
Teraz autorzy badań chcą sprawdzić swoją przewidywania w SLAC National Accelerator Laboratory. Właśnie trwają tam prace nad laserem o umiarkowanej intensywności, a źródło elektronów już się tam znajduje. Jeśli dowiedziemy prawdziwości naszych obliczeń, zaoszczędzimy miliardy dolarów, dodaje Qu.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po trzech latach pracy inżynierom z MIT udało się zwiększyć moc wysokotemperaturowego nadprzewodzącego elektromagnesu dla reaktorów fuzyjnych do rekordowych 20 tesli. Tym samym stworzyli najpotężniejszy magnes tego typu. Osiągnięcie to pozwoli na zbudowanie pierwszej elektrowni fuzyjnej, zdolnej do wygenerowania większej ilości energii niż sama pobiera.
Przed zaledwie 3 miesiącami informowaliśmy, że po dziesięciu latach prac projektowych i produkcyjnych firma General Atomics jest gotowa do dostarczenia pierwszego modułu Central Solenoid, jednego z najpotężniejszych magnesów na świecie. Będzie on centralnym elementem reaktora fuzyjnego ITER. Central Solenoid to główny wkład USA w tę instalację. Będzie on generował pole magnetyczne o mocy 13 tesli, czyli 280 000 razy większe od ziemskiego pola magnetycznego. Magnes z MIT generuje pole magnetyczne silniejsze o 50%.
Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówi profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
Osiągnięcie naukowców z MIT daje nadzieję na uzyskanie w laboratorium zysku energetycznego netto drogą fuzji jądrowej. To zaś znakomicie ułatwi i przyspieszy prace nad tą technologią. Teraz, gdy udało się przeprowadzić udane testy tak potężnego magnesu dla reaktorów fuzyjnych konsorcjum MIT-CMS będzie chciało wybudować pierwszą na świecie demonstracyjną elektrownię fuzyjną, zwaną SPARC, uzyskującą dodatni bilans energetyczny. Wspomniany magnes to krok milowy na drodze do jej budowy. Dzięki niemu jest szansa, że SPARC powstanie już za 4 lata.
CFS (Commonwealth Fusion Systems) to firma założona w 2018 roku w Plasma Science and Fusion Center na MIT. Jest finansowana m.in. przez włoski koncern ENI, założoną przez Billa Gatesa Breakthrough Energy Ventures czy singapurską Temasek. Firma współpracuje z Departamentem Energii, MIT oraz Princeton Plasma Physics Laboratory, a jej celem jest wybudowanie kompaktowej elektrowni fuzyjnej opartej na stworzonej na MIT koncepcji tokamaka ARC.
Żeby zrozumieć, po co w reaktorach fuzyjnych tak potężne magnesy, trzeba wiedzieć, że do zaistnienia fuzji jądrowej potrzebne są olbrzymie temperatury, sięgające 100 milionów stopni Celsjusza i więcej. Takich temperatur nie wytrzyma żadne ciało stałe. Dlatego też plazmę, w której będzie zachodziła fuzja, trzeba utrzymać z dala od ścian reaktora. Można to zrobić za pomocą silnego pola magnetycznego. I właśnie temu – zawieszeniu plazmy w przestrzeni – służą potężne elektromagnesy.
Główna innowacja projektu ARC polega na wykorzystaniu wysokotemperaturowych nadprzewodników, które pozwalają na uzyskanie znacznie silniejszego pola magnetycznego w mniejszej przestrzeni. Materiały pozwalające na stworzenie takiego magnesu pojawiły się na rynku dopiero kilka lat temu. Koncepcja ARC powstała w 2015 roku. Demonstracyjny reaktor SPARC ma być o połowę mniejszy niż pełnowymiarowy ARC i ma posłużyć do przetestowania projektu.
Prace nad fuzją jądrową trwają na MIT od dawna. W ubiegłym roku pojawiło się kilka artykułów naukowych, których autorzy donosili, że jeśli uda się wyprodukować takie magnesy, jak założono, to reaktory typu ARC rzeczywiście powinny wytwarzać więcej energii niż zużyją.
Nasz projekt wykorzystuje standardową fizykę plazmy oraz projekt i założenia inżynieryjne konwencjonalnego tokamaka, ale łączy je z nową technologią wytwarzania magnesów. Zatem nie potrzebowaliśmy innowacji na kilku polach. Naszym celem było stworzenie odpowiedniego magnesu, a następnie zastosowanie w praktyce tego, czego nauczyliśmy się w ciągu ostatnich kilku dekad, mówi Martin Greenwald z Plasma Science and Fusion Center.
To wielka chwila, dodaje Bob Mumgaard, dyrektor wykonawczy CFS. Dysponujemy teraz platformą, która dzięki dziesięcioleciom badań nad tego typu rozwiązaniami jest bardzo zaawansowana z naukowego punktu widzenia i jednocześnie bardzo interesująca z komercyjnego punktu widzenia. To pozwoli nam szybciej budować mniejsze i tańsze reaktory. Trzy lata temu ogłosiliśmy, że zamierzamy zbudować magnes o mocy 20 tesli, który będzie potrzebny do przyszłych reaktorów fuzyjnych. Osiągnęliśmy nasz cel bez żadnych opóźnień, dodaje.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.