Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kwazary mogą służyć do pomiarów odległości we wszechświecie

Rekomendowane odpowiedzi

Międzynarodowy zespół astronomów, w skład którego wchodzi profesor Marek Biesiada z Narodowego Centrum Badań Jądrowych, zaproponował zastosowanie kwazarów do pomiarów olbrzymich odległości we wszechświecie. Uczni twierdzą, że ich metoda pozwoli dokonywać pomiarów do obiektów odległych od nas nawet o 13 miliardów lat.

Kwazary to aktywne jądra galaktyk, w skład których wchodzi supermasywna czarna dziura i dysk akrecyjny utworzony ze znajdującej się wokół i wciąganej do dziury materii. Wokół dysku znajduje się sferyczna otoczka zwana gorącą koroną, a w dalszej odległości znajdziemy pyłowy torus.

Dysk akrecyjny promieniuje w ultrafiolecie. Fotony UV przelatują przez gorącą koronę, w której zderzają się z wysokoenergetycznymi elektronami. Przejmują przy tym ich energię, stając się fotonami X. Zespół Biesiady wykazał na próbce 2421 kwazarów, że korelacja jasności UV-X jest silnie powiązana z odległościami kosmologicznym. Jest tak dlatego, że owa korelacja ustalana jest na jasnościach obserwowanych, a fizycznie odpowiadają za nią moce promieniowania UV oraz X. Obserwowane jasności, z kolei, zależą od mocy i odległości. Ponieważ kwazary obserwowane są też na odległościach stosowalności metody świec standardowych supernowych Ia, możemy zmierzyć odległość do nich dwoma metodami: SN Ia oraz nową. Pozwala to skalibrować metodę wykorzystującą kwazary, mówi profesor Biesiada.

Wspomniane przez uczonego świece standardowe to obiekty o znanej absolutnej wielkości gwiazdowej. Znając tę wartość oraz jasność pozorną, czyli wielkość gwiazdową obiektu widzianego z Ziemi, można obliczyć odległość do tego obiektu.

Jak się mierzy odległości w kosmosie?

Odpowiedź na to pytanie zależy od tego, jak daleko jest obiekt, do którego odległość chcemy zmierzyć. Pomiary odległości do Księżyca mogą zostać wykonane radarem lub laserem, gdyż astronauci pozostawili na jego powierzchni lusterko. Odległości do Słońca i innych obiektów w Układzie Słonecznym i najbliższym otoczeniu mierzymy metodą paralaksy, czyli określania kąta, o jaki na tle odległych gwiazd przesunął się obiekt, gdy obserwator zmienił pozycję. Metoda ta pozwala nawet na mierzenie odległości do najbliższych gwiazd. Jednak im dalej badany obiekt, tym mniejszy kąt o jaki obiekt przesuwa się względem gwiazd w tle. W pewnym momencie kąt ten staje się tak mały, że nie jesteśmy w stanie wykorzystać paralaksy.

Do pomiarów na dalsze odległości służą nam tzw. świece standardowe. Jako świece standardowe możemy wykorzystać gwiazdy zmienne typu RR Lyrae, przydające się do pomiarów w ramach Drogi Mlecznej. Popularnymi świecami standardowymi są cefeidy, zmienne gwiazdy-olbrzymy. Natomiast pomiarów na największe odległości możemy dokonać wykorzystując supernowe Ia. Można za ich pomocą mierzyć na odległość przesunięcia ku czerwieni z-2. To około 10 miliardów lat świetlnych. Jednak astronomowie chcą sięgać coraz dalej. Stąd propozycja wykorzystania kwazarów w roli świec standardowych.

Naukowcy przeprowadzili też testy swojej metody. Zrekonstruowali na przykład ewolucję wszechświata według modelu ΛCDM. Dane uzyskane przy pomocy ‘metody kwazarów’ wykazały, w granicy niepewności, dużą zgodność z modelem ΛCDM. Do danych dopasowaliśmy model ΛCDM, gdzie wolnymi zmiennymi były parametry tego modelu. Wyznaczona na tej podstawie gęstość materii jest zgodna z wartością uzyskaną z innych obserwacji kosmologicznych. Istotą tej pracy była metoda kalibracji kwazarów nie odwołująca się do modelu kosmologicznego – aby nie wpaść w błędne koło stosując później kwazary do testowania modeli kosmologicznych, wyjaśnia profesor Biesiada.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Webba przyłapał masywne galaktyki podczas procesu tworzenia przez nie gromady skupionej wokół ekstremalnie czerwonego kwazara. Zaskakujące odkrycie pozwoli nam lepiej zrozumieć, jak we wczesnym wszechświecie dochodziło do tworzenia gromad galaktyk i powstania wszechświata takiego, jakim znamy go dzisiaj.
      Kwazary to rodzaj galaktyki aktywnej. Mają one olbrzymią jasność, a w ich centrum znajduje się supermasywna czarna dziura. Wpadający w nią gaz powoduje, że kwazar świeci tak jasno, iż przyćmiewa wszystkie gwiazdy w galaktyce.
      Teleskop Webba badał kwazar SDSS J165202.64+172852.3 odległy od nas o 11,5 miliarda lat świetlnych. Ze względu na przesunięcie ku czerwieni, zjawisko polegające na tym, iż im bardziej odległe źródło, tym większą długość fali ma docierające z niego światło, kwazar ten jest czerwony. To zaś powoduje, że Webb, wyspecjalizowany w obserwowaniu światła podczerwonego, jest świetnym instrumentem do jego obserwacji.
      Nasz kwazar to jedna z najpotężniejszych znanych nam aktywnych galaktyk znajdujących się w tak dużej odległości. Astronomowie od dawna spekulowali, że potężna emisja z kwazaru może wywoływać zjawisko zwane „galaktycznym wiatrem”, który wypycha gaz z galaktyki macierzystej i może w znaczącym stopniu wpływać na formowanie się w niej gwiazd. Naukowcy, którzy już wcześniej obserwowali SDSS J165202.64+172852.3 za pomocą Hubble'a i innych teleskopów spekulowali, że potężna emisja może być sygnałem, że galaktyka ta łączy się z inną, której nie można dostrzec.
      Teraz jednak dysponujemy Teleskopem Webba. Grupa naukowców wykorzystała spektrograf NIRSpec, który jest w stanie zebrać dane z całego pola widzenia teleskopu i obserwowac nie tylko kwazar, ale całą jego galaktykę macierzystą oraz jej otoczenie. Uczeni dostrzegli coś, czego się nie spodziewali. Wokół kwazaru krążą co najmniej 3 inne galaktyki, a dzięki możliwościom Webba udało się zbadać ruch całego otaczającego materiału, co pozwoliło stwierdzić, że kwazar jest centrum formującej się gromady galaktyk.
      Znamy jedynie kilka protogromad galaktyk z tak wczesnego czasu po powstaniu wszechświata. Bardzo trudno jest je znaleźć, gdyż niewiele  gromad mogło się uformować w tak krótkim czasie po Wielkim Wybuchu, mówi główna autorka badań, doktor Dominika Wylezalek z Uniwersytetu w Heidelbergu.
      Astronomowie przypuszczają, że jeszcze nie dostrzegli wszystkiego. Archiwalne dane z Hubble'a sugerują, że galaktyk wokół kwazaru może być więcej. Nasze wstępne dane wskazują na silne interakcje pomiędzy sąsiadującymi galaktykami, dodaje Andrey Vayner z Uniwersytetu Johnsa Hopkinsa.
      Trzy potwierdzone galaktyki krążą wokół siebie z bardzo dużą prędkością, co wskazuje, że znajduje się tam dużo masy. Biorąc pod uwagę odległości pomiędzy nimi a kwazarem można przypuszczać, że to jeden z najbardziej gęstych obszarów we wczesnym wszechświecie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W odległości 9 miliardów lat świetlnych od Ziemi dwie supermasywne czarne dziury okrążają się co 2 lata. Masa każdej z nich jest setki milionów razy większa niż masa Słońca, a dzieli je odległość zaledwie 50 razy większa niż dystans pomiędzy Plutonem z Słońcem. Gdy za 10 000 lat obie czarne dziury się połączą, dojdzie do gigantycznej kolizji, która wstrząśnie czasoprzestrzenią i wyśle przez wszechświat fale grawitacyjne.
      Czarne dziury zostały odkryte przez astronomów z California Institute of Technology (Caltech), którzy obserwowali odległy kwazar. Kwazary to aktywne galaktyki o olbrzymiej mocy promieniowania. Promieniowanie to pochodzi z dysku akrecyjnego masywnej czarnej dziury znajdującej się w centrum galaktyki. Jest ono tak intensywne, że cała galaktyka wygląda jak gwiazda. Uczeni przyglądali się kwazarowi PKS 2131-021. Już wcześniej wiedziano, że kwazary mogą posiadać dwie supermasywne czarne dziury, ale zdobycie dowodu na to było niezwykle trudne.
      Zespół z Caltechu informuje właśnie na łamach The Astrophysical Journal Letters, że PKS 2131-021 to drugi znany nam obiekt, w którym mogą istnieć dwie supermasywne czarne dziury będące właśnie w trakcie łączenia się. Pierwszym takim obiektem jest kwazar OJ 287, w którym czarne dziury okrążają się w ciągu 9 lat. W przypadku PKS 2131-021 okres ten wynosi zaledwie 2 lata.
      Dowody na istnienie dwóch czarnych dziur w badanym kwazarze pochodzą z obserwacji radiowych prowadzonych przez 45 lat. Pięć różnych obserwatoriów astronomicznych zarejestrowało zmiany jasności kwazaru w paśmie radiowym. Są one powodowane zmianami pozycji względem ziemi potężnego dżetu wydobywającego się z jednej z czarnych dziur. A do zmian tej pozycji dochodzi, gdyż w kwazarze są dwie czarne dziury krążące wokół siebie. Wykres zmian jasności to niemal idealna sinusoida. Niczego wcześniej nie zaobserwowano w żadnym z kwazarów.
      Gdy zdaliśmy sobie sprawę, że szczyty i doliny wykresu dla danych z nowych obserwacji są takie, jak szczyty i doliny wykresu danych z lat 1975–1983, wiedzieliśmy, że dzieje się tam coś szczególnego, mówi główna autorka badań, studentka Sandra O'Neill. Zmiany w PKS 2131 nie są po prostu okresowe. To zmiany sinusoidalne. A to oznacza, że występuje tam wzór, który możemy śledzić w czasie, mówi mentor O'Neill profesor Tony Readhead.
       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najnowsze odkrycie naukowców z Uniwersytetu Przyrodniczego we Wrocławiu dowodzi, że dotychczasowe podejście do korygowania błędów wynikających z opóźnienia wiązki laserowej w atmosferze było wadliwe.  Dlatego proponują zupełnie nowe rozwiązanie, dzięki któremu obserwacje m.in.: kształtu Ziemi, topniejących lodowców oraz zmian poziomu wód oceanicznych będą dokładniejsze.
      Pomiary laserowe opierają się na rejestracji różnicy czasu pomiędzy momentem wysłania impulsu laserowego na stacji a momentem powrotu tego samego impulsu po tym, gdy zostanie on odbity przez retroreflektor na satelicie lub Księżycu. Podczas pomiaru wiązka laserowa przechodzi dwukrotnie przez atmosferę ziemską, gdzie ulega ugięciu i opóźnieniu. Technologia detektorów laserowych pozwala na uzyskanie dokładności sub-milimerowych. Jednakże błędy wyznaczenia opóźnienia wiązki laserowej w atmosferze są wielokrotnie większe i stanowią główne źródło błędów w pomiarach laserowych do satelitów i Księżyca.
      Na czym polega nowatorstwo rozwiązania Polaków?
      Naukowcy z Instytutu Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu zaproponowali zupełnie nowe i innowacyjne podejście do korygowania opóźnienia wiązki laserowej w atmosferze. Podejście opiera się na uwzględnieniu grubości warstw atmosfery, przez które przechodzi laser. Do wyznaczenia wartości opóźnienia lasera wykorzystuje się odczyty meteorologiczne na stacji, do których wyliczana jest poprawka zależna od wysokości satelity nad horyzontem oraz od początkowej wartości opóźnienia wiązki lasera. W zaproponowanej metodzie analizuje się wszystkie pomierzone odległości na wszystkich stacjach i wylicza się dla każdej stacji poprawki, które są wprost proporcjonalne do opóźnienia wiązki lasera wynikającego z bezpośrednich pomiarów meteorologicznych i grubości atmosfery, którą musi pokonać laser. Poprawkę meteorologiczną wystarczy wyliczać raz na tydzień dla każdej stacji laserowej, dzięki czemu obliczenia pozostają stabilne nawet dla stacji z niewielką liczbą zarejestrowanych pomiarów laserowych do satelitów, a zarazem błąd wynikający z opóźnienia atmosferycznego zostaje prawie całkowicie usunięty. Metoda opracowana przez polski zespół pozwala na skuteczną eliminację od 75 do 90% błędów systematycznych w pomiarach laserowych wynikających z błędów opóźnienia atmosferycznego.
      Sposób redukcji błędów meteorologicznych już niedługo ma szansę stać się standardem w laserowych pomiarach odległości do satelitów zwiększając dokładność nawet historycznych obserwacji Księżyca i satelitów, dzięki swojej prostocie i uniwersalności. Pozwala również na wykrycie błędnych odczytów z barometrów, które wcześniej negatywnie wpływały na satelitarne obserwacje Ziemi i Księżyca. Przełoży się to na poprawę przyszłych oraz wcześniejszych obserwacji kształtu Ziemi, tzw. geoidy, zmiany centrum masy Ziemi i obserwacji nieregularności w ruchu obrotowym, obserwacji topniejących lodowców oraz zmian poziomu wód oceanicznych.
      Po co mierzymy odległości do satelitów?
      Dzięki pomiarom laserowym do sztucznych i naturalnego satelity Ziemi dowiedzieliśmy się, ile wynosi stała grawitacji i masa Ziemi, o ile zmienia się spłaszczenie Ziemi w czasie, możemy korygować i wyliczać poprawki pozycji satelitów Galileo i GLONASS oraz zidentyfikowaliśmy, gdzie znajduje się środek masy Ziemi i jak przemieszcza się w czasie za sprawą topniejących lodowców na Grenlandii. Pomiary laserowe do Księżyca pozwoliły odkryć, że Księżyc oddala się od Ziemi o 3,8 cm rocznie. Ponadto pozwoliły na dokładny opis wahań w ruchu Księżyca, czyli tzw. libracji oraz zrewidować pochodzenie srebrnego globu.
      Wrocławskie centrum obliczeniowe pomiarów laserowych
      Grupa badawcza kierowana przez profesora Krzysztofa Sośnicę od wielu lat zajmuje się rozwojem technik laserowych i mikrofalowych w geodezji satelitarnej, a także wyznaczaniem precyzyjnych orbit sztucznych satelitów i parametrów opisujących Ziemię. W Instytucie Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu od 2017 roku funkcjonuje Stowarzyszone Centrum Analiz Międzynarodowej Służby Pomiarów Laserowych do Sztucznych Satelitów i Księżyca (ang. International Laser Ranging Service, ILRS). Centrum odpowiada za monitorowanie jakości orbit satelitów Globalnych Nawigacyjnych Systemów Satelitarnych (GNSS): Galileo, GLONASS, BeiDou i QZSS z wykorzystaniem orbit opartych o obserwacje mikrofalowe i bezpośrednie pomiary laserowe. Jako jedyne na świecie, wrocławskie centrum specjalizuje się w kombinacji dwóch technik obserwacyjnych sztucznych satelitów: laserowej i mikrofalowej GNSS. 

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki Very Large Telescope astronomom udało się odkryć i zbadać najbardziej odległe źródło emisji radiowej z dżetami. Źródłem tym jest kwazar położony w odległości 13 miliardów lat świetlnych od Ziemi. Odkrycie pozwoli na lepsze zrozumienie wczesnego wszechświata.
      Kwazary to bardzo jasne obiekty znajdujące się w centrach niektórych galaktyk. Są one zasilane przez supermasywne czarne dziury. Promieniowanie kwazara powstaje w dysku akrecyjnym otaczającą czarną dziurę. Gaz i pył opadające na dysk rozgrzewają się, emitując olbrzymie ilości promieniowania.
      Nowo odkryli kwazar, P172+18 [PDF], powstał, istniał, gdy wszechświat miał zaledwie 780 milionów lat. Znamy bardziej odległe kwazary, ale przy żadnym z nich nie zauważono dotychczas dżetów.
      Kwazar zasilany jest przez czarną dziurę o masie około 300 milionów razy większej od masy Słońca. Pochłania ona materię bardzo szybko. To jedna z najszybciej przybierających na masie czarnych dziur, mówi współautorka badań Chiara Mazzucchelli.
      Specjaliści sądzą, że istnieje związek pomiędzy szybkim pochłanianiem materii przez czarną dziurę, a potężnymi dżetami z kwazarów. Niewykluczone, że dżety zaburzają przepływ gazu w pobliżu czarnej dziury powodując, że szybciej opada on na dysk akrecyjny. Badanie kwazarów z dżetami może więc wiele powiedzieć na temat szybkiego pojawienia się supermasywnych czarnych dziur we wczesnym wszechświecie.
      Drugi z autorów badań, Eduardo Bañados z Instytutu Astronomii im. Maxa Plancka mówi, że wkrótce uda się znaleźć więcej podobnych kwazarów, niewykluczone, że jeszcze dalej położonych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie korzystający z Very Long Baseline Array (VLBA) dokonali pierwszego w historii bezpośredniego geometrycznego pomiaru odległości do magnetara znajdującego się w Drodze Mlecznej. Pomiar ten pomoże stwierdzić, czy magnetary są źródłem tajemniczych szybkich błysków radiowych (FRB).
      Magnetary to odmiana gwiazd neutronowych. Te bardzo gęste obiekty charakteryzują się niezwykle silnym polem magnetycznym. Pole magnetyczne typowego magnetara może być bilion razy silniejsze niż pole magnetyczne Ziemi. Wiadomo też, że magnetary emitują silne impulsy promieniowania rentgenowskiego i gamma, przez co od pewnego czasu podejrzewa się, że to właśnie one mogą być źródłami FRB.
      Odkryty w 2003 roku magnetar XTE J1810-197 jest jednym z zaledwie sześciu takich obiektów, o których wiadomo, że emitują impulsy w paśmie radiowym. Emisję taką notowano w latach 2003–2008, później magnetar ucichł, a w grudniu 2018 roku znowu zaczął emitować sygnał.
      Grupa naukowców wykorzystała VLBA do obserwacji XTE J1810-197 najpierw od stycznia do listopada 2019, a później w marcu i kwietniu bieżącego roku. Dzięki temu możliwe było obserwowanie obiektu z dwóch przeciwległych stron orbity Ziemi wokół Słońca. To zaś pozwoliło na zarejestrowanie paralaksy, czyli niewielkiej pozornej zmiany położenia obiektu względem tła.
      Po raz pierwszy udało się wykorzystać paralaksę do pomiaru odległości od magnetara. Okazało się, że to jeden z najbliższych magnetarów. Znajduje się w odległości około 8100 lat świetlnych dzięki czemu jest świetnym obiektem dla przyszłych badań, mówi Hao Ding, student z australijskiego Swinburne University of Technology.
      Niedawno, 28 kwietnia, inny magnetar – SGR 1935+2154 – wyemitował najsilniejszy sygnał radiowy, jaki kiedykolwiek zarejestrowano w Drodze Mlecznej. Co prawda nie był on tak silny jak FRB pochodzące z innych galaktyk, jednak wydarzenie to tym bardziej sugeruje, że magnetary mogą być źródłem FRB.
      Większość znanych nam FRB pochodzi spoza Drogi Mlecznej. To niezwykle silne, trwające milisekundy sygnały o nieznanym źródle. Są na tyle niezwykłe, że muszą powstawać w bardzo ekstremalnych środowiskach. Takich jak np. magnetary.
      Dzięki dokładnemu poznaniu odległości do magnetara, możemy precyzyjnie obliczyć siłę sygnału radiowego, który emituje. Jeśli pojawi się coś podobnego do FRB pochodzącego XTE J1810-197, będziemy wiedzieli, jak silny to był impuls. FRB bardzo różnią się intensywnością, więc badania magnetara XTE J1810-197 pozwolą nam stwierdzić, czy jego emisja jest zbliżona do zakresu FRB, wyjaśnia Adam Deller ze Swinburne.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...