-
Similar Content
-
By KopalniaWiedzy.pl
Badania przeprowadzone na modelach mysich, u których poprzez dietę wysokotłuszczową wywołano otyłość wykazały, że samice, w przeciwieństwie do samców, są lepiej chronione przed otyłością i towarzyszącym jej stanem zapalnym, gdyż w ich organizmach dochodzi do większej ekspresji proteiny RELM-α. Stwierdziliśmy, że komórki układu odpornościowego oraz RELM-α są odpowiedzialne za międzypłciowe różnice w reakcji układu odpornościowego na otyłość, mówi profesor Meera G. Nair z Uniwersytetu Kalifornijskiego w Riverside. Jest ona współautorką badań prowadzonych wraz z profesor Djurdjicą Coss.
Do białek z rodziny RELM (resistin-like molecule), obok rezystyny, należą też RELM-α i RELM-β. Do wysokiej ekspresji RELM zachodzi w czasie infekcji i stanów zapalnych. Gdy tylko u myszy pojawia się infekcja, błyskawicznie dochodzi do uruchomienia produkcji RELM-α, które ma chronić tkanki. RELM-α reguluje działanie dwóch typów komórek układu odpornościowego: przeciwzapalnych makrofagów i eozynofili. Autorki badań zaobserwowały, że samce myszy wykazywały niższą ekspresję RELM-α, miały mniej eozynofili, a więcej prozapalnych makrofagów, które wspomagały otyłość. Gdy uczone usunęły RELM-α u samic odkryły, że nie były one chronione przed otyłością, miały mniej oezynofili, a więcej makrofagów – podobnie jak samce.
Mogłyśmy jednak zredukować otyłość u samic myszy podając im eozynofile lub RELM-α to sugeruje, że mogą być one obiecującymi środkami terapeutycznymi, mówi Nair.
Niedobór RELM-α miał duży wpływ na samców, ale wciąż był on mniejszy niż na samice. Prawdopodobnie dlatego, że samice mają wyższy poziom RELM-α, zatem niedobory bardziej wpływają na ich organizm. Z naszych badań płynie wniosek, że w chorobach metabolicznych, takich jak otyłość, konieczne jest branie pod uwagę różnic międzypłciowych, stwierdza Coss.
Najważniejsze jednak jest odkrycie nieznanej dotychczas, zależnej od płci, roli RELM-α w modulowaniu reakcji metabolicznej i zapalnej na indukowaną dietą otyłość. Istnieje „oś RELM-α-eozynofile-makrofagi”, która chroni kobiety przed otyłością i stanem zapalnym wywoływanymi dietą. Wzmocnienie tego szlaku może pomóc w walce z otyłością, dodaje Nair.
« powrót do artykułu -
By KopalniaWiedzy.pl
W latach 1993–2010 ludzie wypompowali tak olbrzymią ilość wód podziemnych, że doprowadziło to do... przesunięcia osi Ziemi i biegunów o niemal 80 centymetrów. Spowodowane działalnością człowieka zmiany w nachyleniu osi planety są takie, jak zmiany spowodowane w tym samym czasie przez topnienie lodów Grenlandii.
Oś Ziemi to prosta, która jest osią obrotu własnego planety. Wyznacza ona bieguny geograficzne. Ruch obrotowy naszej planety jest bardzo skomplikowany. Obejmuje kwestię zarówno ruchu osi obrotu Ziemi w przestrzeni, w jej wnętrzu, nakładają się na to zmiany prędkości obrotowej, zjawisko precesji oraz nutacji, czyli kołysania się chwilowej osi obrotu. Jednym z najważniejszych elementów tego kołysania się jest nutacja swobodna o okresie Chandlera wynoszącym ok. 1,2 roku. W tym czasie oś obrotu Ziemi przesuwa się średnio o około 9 metrów. I właśnie na to przesunięcie miała wpływ ostatnia działalność człowieka.
Naukowcy z Korei Południowej, Australii, Chin i USA oszacowali, że w latach 1993–2010 ludzie wypompowali spod ziemi 2150 gigaton – czyli 2 biliony 150 miliardów ton – wody, a związany z tym wzrost poziomu oceanu wynosił ok. 0,3 mm/rok. Z przeprowadzonych przez nich obliczeń wynika, że te zmiany rozkładu masy na naszej planecie spowodowały przesuwanie się osi Ziemi, a zatem i biegunów, o 4,36 cm na rok, czyli w sumie o 78,48 cm w badanym okresie. Wypompowana woda odpowiadała za 6,24 mm wzrostu poziomu oceanów. Clark Wilson z University of Texas w Austin mówi, że szczególnie silny wpływ ma to, co dzieje się z wielkimi podziemnymi zbiornikami wody na średnich szerokościach geograficznych. Jednym czynnikiem, który wpływa na wspomniane przesunięcia biegunów bardziej, niż zmiany w podziemnych zasobach wody są wciąż trwające ruchy izostatyczne, czyli unoszenie się mas skalnych uwolnionych od ciężaru lodu po ostatnim zlodowaceniu.
Obliczenia pokazują, jak wiele wody ludzie wypompowują spod ziemi. Same cyfry nie są zbyt istotne. Istotny jest fakt, że masa przemieszczanej przez człowieka wody jest tak gigantyczna, iż ma wpływ na zmianę biegunów geograficznych planety.
Warto przy tym pamiętać, że pod powierzchnią Ziemi znajduje się znacznie więcej wody, niż do niedawna sądzono.
« powrót do artykułu -
By KopalniaWiedzy.pl
Specjaliści od dawna poszukują bezpośredniego związku pomiędzy aktywnością neuronów w mózgu, a aktywnością bakterii w układzie pokarmowym. Francuscy uczeni z Instytutu Pasteura poinformowali właśnie na łamach Science, że w modelu zwierzęcym neurony w podwzgórzu bezpośrednio wykrywają zmiany aktywności bakterii w jelitach i odpowiednio dostosowują do tego apetyt i temperaturę ciała myszy. To dowodzi, że istnieje bezpośrednia komunikacja pomiędzy mikrobiomem jelit a mózgiem. Być może uda się to wykorzystać do opracowania metod walki z cukrzycą czy otyłością.
Związki uwalniane przez mikrobiom trafiają do krwi i mogą wpływać na różne procesy fizjologiczne gospodarza, takie jak działanie układu odpornościowego, metabolizm czy funkcje mózgu. Metabolity mikroorganizmów, w tym krótkołańcuchowe kwasy tłuszczowe i pochodne tryptofanu, regulują bardzo wiele procesów. Składowe strukturalne mikroorganizmów są jednak wykrywane przez receptory wykrywające wzorce (PRR), które sygnalizują obecność wirusów, bakterii i grzybów na błonach śluzowych, w tkankach i komórkach. Wiemy, że składniki bakteryjne wpływają na działanie mózgu, a PRR są powiązane z zaburzeniami jego pracy. Jednak nie wiemy, czy neurony w mózgu mogą bezpośrednio wykrywać komponenty bakteryjne i czy bakterie mogą regulować procesy fizjologiczne poprzez regulowanie neuronów w mózgu, stwierdzają autorzy badań.
Naukowcy skupili się na receptorze NOD2 obecnym w komórkach odpornościowych. Należy on do grupy rozpoznających wzorce receptorów wewnątrzkomórkowych. Receptor ten wykrywa muropeptydy wchodzące w skład ścian komórkowych bakterii. Wiadomo, że u myszy, w neuronach których nie dochodzi do ekspresji Nod2, pojawiają się zmiany odnośnie spożywania pokarmu, zakładania gniazda i temperatury ciała. Naukowcy wykorzystali więc techniki obrazowania, by zidentyfikować te obszary mózgu, które reagują na doustne podawanie muropeptydów. Sprawdzali też, jak zmieniała się aktywność neuronów po podaniu myszom muropeptydów. Stworzyli też genetycznie zmodyfikowane myszy, w których podwzgórzach nie dochodziło do ekspresji Nod2. To właśnie podwzgórze reguluje temperaturę ciała i przyjmowanie pokarmów.
Na podstawie tak prowadzonych eksperymentów stwierdzili, że do ekspresji receptora NOD2 dochodzi w różnych regionach mózgu myszy, w szczególności zaś w podwzgórzu. A w kontakcie z muropeptydami ekspresja ta jest tłumiona.
Muropeptydy obecne w jelitach, krwi i mózgu to dowody na proliferację bakterii. To niezwykłe odkrycie pokazuje, że fragmenty bakterii bezpośrednio wpływają na tak ważny ośrodek w mózgu, jakim jest podwzgórze, o którym wiemy, że reguluje kluczowe funkcje organizmu, jak temperatura, reprodukcja, głód i pragnienie, stwierdzają naukowcy.
Uczeni mają nadzieję, że dzięki zdobytej wiedzy i przyszłym interdyscyplinarnym badaniom – w które powinni zostać zaangażowani neurolodzy, immunolodzy i mikrobiolodzy – powstaną w przyszłości nowe leki skuteczniej zwalczające takie zaburzenia metaboliczne jak otyłość i cukrzyca.
« powrót do artykułu -
By KopalniaWiedzy.pl
Obecna epidemia otyłości jest głównie związana ze spożywaniem nadmiernej liczby kalorii, a nie z brakiem ruchu, mówi doktor Esra Tasali, dyrektor Centrum Snu na Wydziale Medycyny University of Chicago. Przez wiele lat my i inne grupy naukowe wielokrotnie wykazywaliśmy, że ograniczenie długości snu wpływa na apetyt, co powoduje, że jemy więcej, a to z kolei wiąże się z ryzykiem przybrania na wadze, dodaje. Podczas randomizowanych badań klinicznych naukowcy z Chicago wykazali, że wystarczy poprawić higienę snu, by zmniejszyć ilość spożywanych kalorii o 270 kcal dziennie.
W testach klinicznych udział wzięło 80 dorosłych osób. U młodych dorosłych z nadwagą, którzy średnio spali mniej niż 6,5 godziny na dobę, naukowcy – poprawiając higienę snu – byli w stanie wydłużyć ten czas o średnio 1,2 godziny. Docelowo chcieli, by osoby te spały 8,5 godziny na dobę. Okazało się jednak, że już samo poprawienie higieny snu i dłuższy sen spowodowały, że badani mniej jedli. Co ważne, naukowcy w żaden sposób nie wpływali na zwyczaje żywieniowe badanych. Cały eksperyment odbywał się w naturalnych warunkach. Biorące w nim udział osoby spały we własnych domach i zachowywały się tak, jak dawniej. Jedną różnicą było poprawienie higieny ich snu, przez co uległ on wydłużeniu. To wystarczyło, by średnio spożywali o 270 kcal dziennie mniej. To zaś powinno przełożyć się na utratę 12 kilogramów w ciągu 3 lat.
Większość badań tego typu to badania krótkotrwałe, prowadzone w laboratoriach, a spożywane kalorie pochodzą z diety oferowanej badanym przez naukowców. W naszym badaniu wpływaliśmy jedynie na sen. Badani jedli to co chcieli i ile chcieli. W żaden sposób nie mieliśmy na to wpływu, stwierdza Tasali.
Naukowcy, by obiektywnie badać ilość kalorii spożywanych przez badanych, wykorzystali metodę „podwójnie oznaczonej wody”. To test z moczu wykonywany u osób pijących wodę, w której atomy wodoru i tlenu zostały zastąpione innymi, naturalnymi łatwymi do śledzenia izotopami. To złoty standard obiektywnego pomiaru wydatkowania energii w warunkach pozalaboratoryjnych. Jego zastosowanie zmieniło sposób prowadzenia badań nad otyłością u ludzi, mówi profesor Dale A. Schoeller.
Warto podkreślić, że uczestnicy wzięli udział w zaledwie jednej sesji dotyczącej higieny snu. To wystarczyło, by wydłużyli sen o ponad godzinę na dobę. To wystarczyło, by większość zaczęła jeść zdecydowanie mniej. U niektórych spadek wyniósł aż 500 kcal dziennie.
Eksperyment trwał w sumie miesiąc. Przez pierwsze dwa tygodnie naukowcy zbierali informacje o śnie i diecie badanych, a przez kolejne dwa, po sesji nt. higieny snu, monitorowali skutki dłuższego spania. To nie było badanie nad utratą wagi. Ale nawet po tych dwóch tygodniach zauważyliśmy, że badani zaczęli spalać więcej kalorii niż przyjmowali. Jeśli utrzymaliby higienę snu przez dłuższy czas, doszłoby u nich do klinicznie znaczącej utraty wagi. Wiele osób bardzo się stara, by zmniejszyć ilość spożywanych kalorii i schudną. Można to osiągnąć po prostu śpiąc dłużej, stwierdza Tsali.
« powrót do artykułu -
By KopalniaWiedzy.pl
Proteina XRN1 odgrywa kluczową rolę w regulowaniu apetytu i metabolizmu przez mózg, informują badacze z Okinawa Institute of Science and Technology Graduate University. U myszy utrata tego białka z przodomózgowia doprowadziła do pojawienia się niepohamowanego apetytu i otyłości, czytamy na łamach iScience. Otyłość powodowana jest przez nierównowagę pomiędzy ilością przyjmowanego pokarmu a wydatkowaniem energii. Wciąż jednak słabo rozumiemy, jak apetyt i metabolizm są regulowane przez komunikację pomiędzy mózgiem a innymi częściami ciała, jak trzustka czy tkanka tłuszczowa, mówi doktor Akiko Yanagiya.
W ramach badań naukowcy stworzyli mysz, w której przodomózgowiu nie pojawiła się proteina XRN1. W tym regionie mózgu znajduje się m.in. podwzgórze, niewielki obszar odpowiedzialny za uwalnianie hormonów regulujących sen, temperaturę ciała, pragnienie i głód. Naukowcy zauważyli, że w wieku 6 tygodni ich myszy zaczęły gwałtownie przybierać na wadze i w wieku 12 tygodni były już otyłe. Obserwując zachowanie zwierząt uczeni stwierdzili, że myszy pozbawione XRN1 jadły niemal dwukrotnie więcej niż grupa kontrolna.
To była prawdziwa niespodzianka. Gdy po raz pierwszy pozbawiliśmy mózg XRN1 nie wiedzieliśmy, co odkryjemy. Tak drastyczny wzrost apetytu był czymś niespodziewanym, informuje doktor Shohei Takaoka.
Japończycy chcieli dowiedzieć się, co powoduje, że myszy tak dużo jedzą. Zmierzyli więc poziom leptyny we krwi. To hormon, który tłumi uczucie głodu. W porównaniu z grupą kontrolną był on znacząco podwyższony. Normalnie powinno to zniwelować uczucie głodu i powstrzymać myszy przed jedzeniem. Jednak zwierzęta pozbawione XRN1 nie reagowały na leptynę.
Naukowcy odkryli też, że 5-tygodniowe myszy były oporne na insulinę, co w konsekwencji może prowadzić do cukrzycy. W miarę upływu czasu u myszy tych poziom glukozy i insuliny znacząco rósł wraz ze wzrostem leptyny. Sądzimy, że poziom glukozy oraz insuliny zwiększał się z powodu braku reakcji na leptynę. Oporność na leptynę powodowała, że myszy ciągle jadły, glukoza we krwi utrzymywała się na wysokim poziomie, a przez to wzrastała też ilość insuliny, mówi Yanagiya.
Sprawdzano też, czy otyłość u myszy mogła być spowodowana mniejszą aktywnością fizyczną. Zwierzęta umieszczono w specjalnych klatkach, gdzie mierzono poziom zużywanego tlenu, co służyło jaki wskaźnik tempa metabolizmu. Okazało się, że u 6-tygodniowych myszy nie było żadnej różnicy w wydatkowaniu energii pomiędzy grupą badaną (bez XRN1) a grupą kontrolną. jednak uczeni zauważyli coś bardzo zaskakującego. Otóż myszy bez XRN1 używały węglowodanów jako głównego źródła energii. Natomiast myszy z grupy kontrolnej były w stanie przełączać się pomiędzy wykorzystywaniem węglowodanów w nocy – kiedy to były bardziej aktywne – a wykorzystywaniem zgromadzonego w ciele tłuszczu w dzień, w czasie mniejszej aktywności.
Z jakiegoś powodu myszy pozbawione XRN1 nie wykorzystywały tłuszczu tak efektywnie, jak grupa kontrolna. Nie wiemy, dlaczego tak się dzieje, przyznaje doktor Yanagiya. Gdy zaś myszy te osiągnęły 12 tygodni życia, ich wydatki energetyczne zmniejszyły się w porównaniu z grupą kontrolną. Jednak naukowcy sądzą, że było to spowodowane otyłością, a nie na odwrót. Myślimy, że przyczyną otyłości było tutaj przejadanie się w wyniku oporności na leptynę, dodaje uczony.
XRN1 odgrywa kluczową rolę w aktywności genów, gdyż jest zaangażowana na ostatnim etapie degradacji mRNA. Naukowcy odkryli, że u otyłych myszy poziom mRNA wykorzystywanego do wytwarzania proteiny AgRP, jednego z najsilniejszych stymulatorów apetytu, był podwyższony, co prowadziło też do podwyższonego poziomu AgRP. W tej chwili to tylko spekulacja, ale sądzimy, że zwiększony poziom tej proteiny i nieprawidłowa aktywacja wytwarzających ją neuronów może być przyczyną oporności na leptynę u myszy. W normalnych warunkach leptyna zmniejsza aktywność neuronów AgRP, ale jeśli utrata XRN1 powoduje, że neurony pozostają wysoce aktywne, to może to zagłuszać sygnały przekazywane przez leptynę, wyjaśniają naukowcy.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.