Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Już jutro będziemy mogli oglądać superksiężyc, Księżyc pełni, który dodatkowo znajdzie się w perygeum swojej orbity wokół Ziemi. Nasz naturalny satelita będzie więc nie tylko w pełni, ale i najbliżej Ziemi. Będzie o 14% większy i 30% jaśniejszy niż wówczas, gdyby w czasie pełni znajdował się w apogeum – najdalszym punkcie orbity.
Pełnia to dobry moment, by obserwować ukształtowanie powierzchni Srebrnego Globu. Tym bardziej, gdy znajdzie się on w odległości około 357,5 tysiąca kilometrów od Ziemi. To o 30 tys. kilometrów bliżej, niż jego średnia odległość od naszej planety i 50 tys. km bliżej, niż w apogeum.
Latem na półkuli północnej Księżyc w pełni znajduje się niżej nad horyzontem niż w innych porach roku. Łatwiej więc o spektakularne zdjęcia gór czy budynków z wielkim superksiężycem w tle. Księżyc jest większy i bardziej fotogeniczny. Jako, że jest bliżej horyzontu, jego światło musi przejść przez grubszą warstwę atmosfery, dzięki czemu zyskuje dodatkowe zabarwienie.
Pełnia Księżyca rozpocznie się jutro o godzinie 13:52 czasu polskiego. Oświetlone będzie wówczas 100% jego tarczy. W perygeum księżyc znajdzie się 15 czerwca o godzinie 01:24. Odległość pomiędzy Księżycem a Ziemią wyniesie wówczas 357 432 km. I to właśnie najlepszy moment na jego obserwowanie. Srebrny Glob będzie oświetlony w 100% i będzie najbliżej. Już o godzinie 02:25 oświetlone będzie 99% powierzchni, a on sam oddali się od nas o 2 kilometry.
« powrót do artykułu -
By KopalniaWiedzy.pl
Już za 2 dni, w piątek 27 maja w pobliżu Ziemi znajdzie się jedna z największych asteroid asteroid bliskich Ziemi (NEO). Obiekt 1989 JA ma średnicę 1,8 kilometra i przez najbliższe dwa lata będzie największą asteroidą, jaka przeleci w pobliżu naszej planety.
Nie ma jednak najmniejszych powodów do obaw. 1989 JA zbliży się do Ziemi na 0,027 jednostki astronomicznej, zatem znajdzie się w odległości 4 milionów kilometrów od Ziemi. To mniej więcej 10-krotnie większa odległość niż między Ziemią a Księżycem. Jeszcze nigdy 1898 JA nie była tak blisko naszej planety i przez kolejne 172 lata już tak blisko nie podleci. Obecnie asteroida pędzi z prędkością ponad 48 000 km/h. To kilkunastokrotnie szybciej niż pocisk wystrzelony z karabinu.
Ostatni raz do bliskiego spotkania z równie wielką asteroidą doszło 29 kwietnia 2020, kiedy to w odległości 0,042 j.a. (6,3 mln km) przeleciała asteroida 1998 OR. Na następne spotkanie z równie wielkim obiektem co 1898 JA będziemy musieli poczekać do 27 czerwca 2024 roku. Wówczas to odwiedzi nas 2011 UL21. To asteroida o średnicy od 1,8 do 3,9 kilometra, która znajdzie się w odległości 0,44 j.a., czyli 6,6 miliona kilometrów od Ziemi.
W ciągu najbliższych 100 lat w Ziemię nie uderzy żadna asteroida na tyle duża, by mogła spowodować katastrofę na olbrzymią skalę. Jednak agencje kosmiczne różnych krajów już teraz myślą o ewentualnej obronie naszej planety. Asteroidy bliskie Ziemi są katalogowane i monitorowane, opracowywane są różne technologie obrony przed nimi. Niedawno NASA wystrzeliła misję DART (Double Asteroid Redirection Test), której celem jest sprawdzenie możliwości zmiany trasy asteroidy.
« powrót do artykułu -
By KopalniaWiedzy.pl
W danych zebranych dotychczas przez Teleskop Hubble'a „ukrywało się” około 1700 asteroid. Autorzy najnowszych badań – zawodowi astronomowie oraz naukowcy – połączyli siły i przeanalizowali dane zebrane przez słynny teleskop. Projekt ruszył 30 czerwca 2019 roku w Międzynarodowym Dniu Asteroid. Na popularnej platformie croudsourcingowej nauki, Zooniverse, uruchomiono wówczas „Hubble Asteroid Hunter”.
Celem analizy było znalezienie informacji o nieznanych asteroidach w archiwalnych danych Hubble'a. Trzeba było wyłowić je z danych, które badaczom z innych projektów naukowych wydawały się bezwartościowe. To, co jest śmieciem dla jednego astronoma, może być skarbem dla drugiego, stwierdza lider badań, Sandor Kruk z Instytutu Fizyki Pozaziemskiej im. Maxa Plancka. Uczony zauważa, że ilość danych, które archiwizują astronomowie rośnie w olbrzymim tempie i warto zaglądać do tego, co inni odrzucili.
Analizie poddano informacje zebrane pomiędzy 30 kwietnia 2002 roku a 14 marca 2021.
Jako, że typowy czas obserwacyjny instrumentów Hubble'a wynosi 30 minut, asteroidy pojawiają się na zdjęciach w formie smug. Jednak systemy komputerowe mają problemy z wyłowieniem tych smug, dlatego do ich wykrywania zaprzęgnięto ludzi. Ze względu na orbitę i ruch samego Hubble'a smugi te są zakrzywione, przez co trudno jest stworzyć algorytm komputerowy, który byłby w stanie je wykryć. Dlatego potrzebowaliśmy ochotników, którzy je klasyfikowali, a dopiero później na tej podstawie uczyliśmy algorytm ich rozpoznawania, mówi Kruk.
W projekcie wzięło udział 11 482 naukowców-amatorów, którzy przeanalizowali tysiące zdjęć. Dzięki temu udało się wykryć 1488 prawdopodobnych asteroid. Obiekty takie znajdowały się na około 1% analizowanych fotografii. Później wytrenowany na tym zbiorze danych algorytm zauważył kolejnych 999 kandydatów na asteroidy. Wtedy do pracy przystąpił Kruk i jego koledzy.naukowcy przyjrzeli się obiektom zauważonym przez amatorów oraz algorytm komputerowy i stwierdzili, że mamy do czynienia z 1701 rzeczywistymi asteroidami. Wyniki poszukiwań porównano następnie z bazą danych Minor Planet Center, w której znajdują się informacje o obiektach w Układzie Słonecznych. okazało się, że około 1/3 z tych asteroid została już wcześniej odnotowana.
Teraz naukowcy chcą obserwować odkryte asteroidy, by określić ich orbity oraz odległość od Ziemi.
« powrót do artykułu -
By KopalniaWiedzy.pl
W ramach zwycięskiego projektu konkursu SONATA BIS 11, finansowanego przez Narodowe Centrum Nauki, prof. Krzysztof Sośnica wraz z zespołem wykorzysta precyzyjne obserwacje laserowe i pomiary odległości do satelitów geodezyjnych, by dokładniej zbadać ewolucję ziemskiego pola grawitacyjnego.
Dzięki obserwacjom zmieniającego się pola grawitacyjnego Ziemi, można opisać przemieszczanie się mas w systemie ziemskim, w tym zmiany w wodach lądowych, pokrywie lodowej, oceanach i atmosferze. Obserwacje te dostarczają niezbędnych informacji na temat globalnego obiegu wody, zmian w prądach powierzchniowych oceanów, utraty masy lodowców, podnoszenia się poziomu morza, przemieszczeń obciążenia powierzchniowego, a także wielu innych procesów środowiskowych.
Zmiany, jakie zachodzą w polu grawitacyjnym Ziemi bezpośrednio wpływają na jej rotację, a w szczególności na współrzędne biegunowe i zmiany długości dnia od skali rocznej do wiekowej.
Misje satelitarne GRACE i GRACE Follow-On zrewolucjonizowały obserwacje przemieszczania się mas w systemie ziemskim, ale dostarczają dane stosunkowo od niedawna. Naukowcy posiadają niewielką wiedzę na temat zmian pola grawitacyjnego Ziemi przed 2002 rokiem, czyli przed uruchomieniem misji GRACE. Ponadto, misja GRACE była początkowo projektowana na pięć lat, ale działała dłużej. Po 2010 roku pojawiły się poważne problemy z jej zasilaniem, skutkujące brakami w przesyle danych. Satelita GRACE Follow-On wszedł w fazę naukową w styczniu 2019 roku, czyli 16 miesięcy po wycofaniu jego poprzednika. Te wydarzenia sprawiły, że obserwacje pola grawitacyjnego Ziemi są nieciągłe, z wieloma lukami między 2010 a 2019 rokiem.
Jak podkreśla prof. Krzysztof Sośnica z Instytutu Geodezji i Geoinformatyki na Uniwersytecie Przyrodniczym we Wrocławiu, misje GRACE i GRACE Follow-On nie są jedynymi misjami, które można wykorzystać do wyznaczania zmienności pola grawitacyjnego Ziemi.
W badaniu procesów redystrybucji masy w dużej skali możemy zastosować precyzyjne laserowe pomiary odległości do satelitów geodezyjnych, takich jak LAGEOS-1/2, LARES, BLITS, a także Ajisai, Starlette i Stella – mówi prof. Sośnica, dodając, że satelity Starlette, Ajisai i LAGEOS od lat 80. są regularnie obserwowane przez globalną sieć stacji laserowych zapewniających pomiary odległości z dokładnością kilku milimetrów. A od początku lat 90. wiele aktywnych satelitów niskich (LEO) zostało wyposażonych w precyzyjne odbiorniki Globalnego Systemu Nawigacji Satelitarnej (GNSS), umożliwiające precyzyjne wyznaczenie orbity, a tym samym wyliczenie parametrów pola grawitacyjnego. Można ich więc użyć, by dokładniej zbadać zmiany w polu grawitacyjnym Ziemi.
W projekcie wyznaczone zostaną takie wielkości jak stała grawitacji – czyli fundamentalny parametr niezbędny nie tylko w badaniach geodezyjnych, ale również w fizyce i astronomii. Sprawdzony zostanie ruch środka Ziemi wraz z ocenami i atmosferą. Środek Ziemi wykonuje niewielkie, kilkumilimetrowe ruchy za sprawą zjawisk zachodzących we wnętrzu, a przede wszystkim na powierzchni Ziemi. Figura Ziemi jest spłaszczona ze względu na ruch wirowy planety. Jednak spłaszczenie Ziemi nie jest stałe w czasie. Projekt ma za zadanie odpowiedzieć na pytanie jak zmieniało się spłaszczenie Ziemi za sprawą topniejących lodowców na Grenlandii i Antarktydzie w ciągu ostatnich 40 lat.
Współrzędne geocentrum, czyli środka masy Ziemi oraz wartości spłaszczenia Ziemi będą wyznaczone z wielu źródeł, które opierają się na różnych danych oraz technikach satelitarnych i naziemnych. Różne źródła danych – satelitarne, geofizyczne oraz geodezyjne – zostaną zintegrowane z wykorzystaniem algorytmów uczenia maszynowego oraz sztucznej inteligencji. Zostanie zbadany wpływ ziemskiej grawitacji na zmienność długości doby oraz przemieszczanie się bieguna Ziemi oraz jak zmiany pola grawitacyjnego wpływają na ruch sztucznych satelitów oraz pozycje stacji GPS na powierzchni Ziemi.
Projekt, który w ramach konkursu SONATA BIS 11 zdobył finansowanie z Narodowego Centrum Nauki w wysokości 2 196 000 zł zakłada wyznaczenie modeli z wykorzystaniem zintegrowanych obserwacji. Będzie łączył laserowe pomiary do satelitów geodezyjnych, współrzędnych stacji GNSS, satelitów nisko-orbitujących wyposażonych w odbiorniki GNSS, dane z satelitów GRACE oraz modele geofizyczne.
W ramach tego projektu będziemy wyprowadzać i analizować czasowe, zintegrowane i wielosatelitarne modele pola grawitacyjnego Ziemi, na podstawie danych sięgających od lat 80, co da nam pełniejszy ogląd ewolucji pola grawitacyjnego – mówi prof. Sośnica.
Badania te dadzą fundamentalny wgląd w procesy zachodzące w systemie ziemskim i będą miały zasadnicze znaczenie dla misji satelitarnych do obserwacji i pomiarów Ziemi wymagających wyznaczenia orbit satelitów z największą dokładnością.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.