Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wystartowała pierwsza misja obrony Ziemi. W przyszłym roku uderzy w asteroidę.

Recommended Posts

Dzisiaj o godzinie 7:21 czasu polskiego z Vandenberg Space Force Base w Kalifornii wystartowała DART (Double Asteroid Redirection Test), pierwsza w historii misja, której celem jest sprawdzenie technologii obrony Ziemi przed asteroidami. W jej ramach pojazd kosmiczny zderzy się z asteroidą. Celem testu jest lekka zmiana orbity asteroidy i zbadanie tej zmiany za pomocą naziemnych teleskopów.

Inżynierowie z NASA chcą sprawdzić, czy ich pojazd jest w stanie samodzielnie podlecieć do wybranej asteroidy i uderzyć w nią tak, by zmienić jej trasę w pożądany sposób. Dzięki testowi specjaliści zdobędą dane, które przydadzą się do obrony Ziemi, gdybyśmy kiedyś wykryli rzeczywiste zagrożenie.

Na pokładzie DART znalazł się też niewielki satelita LICIACube Włoskiej Agencji Kosmicznej. Zostanie on uwolniony zanim DART uderzy w asteroidę. LICIACube sfotogafuje zderzenie oraz chmurę materiału, która w jego wyniku powstanie.

Celem DART jest niezagrażająca Ziemi niewielka asteroida Dimorphos o średnicy ok. 160 metrów, krążąca wokół większej asteroidy Didymos (ok. 780 m średnicy). W cztery lata po uderzeniu DART asteroidy odwiedzi misja Hera Europejskiej Agencji Kosmicznej, która zbada krater powstały w wyniku uderzenia oraz określi masę Dimorphosa.

DART będzie pierwszym testem tzw. impaktora kinetycznego. To technika polegająca na celowym rozbiciu pojazdu o asteroidę, by zmienić jej trajektorię. Sądzimy, że obecnie jest to najbardziej zaawansowana technologicznie metoda obrony Ziemi. Dzięki niej poprawimy modele komputerowe dotyczące wpływu impaktora kinetycznego na asteroidę. Przyda się nam to w przyszłości, gdy Ziemi naprawdę będzie coś zagrażało, mówi Lindley Johnson, pierwszy w historii Planetary Defense Officer.

Dimorphos i Didymos zbliżą się do Ziemi w przyszłym roku. Pomiędzy 26 września a 1 października DART ma przechwycić asteroidy i rozbić się o Didymosa pędząc w chwili zderzenia z prędkością 21 500 km/h.

W chwili uderzenia układ Didymos-Dimorphos będzie znajdował się w odległości 11 milionów kilometrów od Ziemi. To dość blisko, dzięki czemu można będzie zaobserwować zmianę orbity Dimorphosa wokół Didymosa. Test nie niesie żadnego zagrożenia dla naszej planety. Siła uderzenia będzie zbyt mała, by rozbić Dimorphosa, a uderzenie tylko przybliży mniejszą asteroidę do większej. Ponadto zgodnie z najnowszymi obliczeniami, orbita Didymosa nie przetnie się z orbitą Ziemi w żadnym punkcie w najbliższej przyszłości.

Dotychczas nie znaleźliśmy żadnej dużej asteroidy, która stanowiłaby zagrożenie dla Ziemi. Jednak nie przestajemy szukać. Naszym celem jest znalezienie takiego obiektu na całe lata albo i dekady, zanim uderzy w naszą planetę. Wówczas będziemy mogli zmienić jego kurs za pomocą technologii podobnej do DART, mówi Lindley Johnson, oficer ds. obrony planetarnej w NASA.

DART to tylko jeden z elementów prac prowadzonych przez NASA w ramach programu obrony Ziemi. Przygotowujemy też Near-Earth Object Surveyor Mission. To teleskop kosmiczny pracujący w paśmie podczerwieni, który ma wystartować jeszcze w obecnej dekadzie. Znakomicie zwiększy on możliwości wyszukiwania i charakteryzowania potencjalnie niebezpiecznych obiektów znajdujących się w odległości do około 50 milionów kilometrów od orbity Ziemi.

Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Zespół naukowców z Wielkiej Brytanii, Australii i USA opisuje na łamach Nature Astronomy wyniki swoich badań nad asteroidami, z których wynika, że ważnym źródłem wody dla formującej się Ziemi był kosmiczny pył. A w procesie powstawania w nim wody główną rolę odegrało Słońce.
      Naukowcy od dawna szukają źródeł wody na Ziemi. Jedna z teorii mówi, że pod koniec procesu formowania się naszej planety woda została przyniesiona przez planetoidy klasy C. Już wcześniej naukowcy analizowali izotopowy „odcisk palca” planetoid typu C, które spadły na Ziemię w postaci bogatych w wodę chondrytów węglistych. Jeśli stosunek wodoru do deuteru byłby w nich taki sam, co w wodzie na Ziemi, byłby to silny dowód, iż to właśnie one były źródłem wody. Jednak uzyskane dotychczas wyniki nie są jednoznaczne. Woda zawarta w chondrytach w wielu przypadkach odpowiadała wodzie na Ziemi, jednak w wielu też nie odpowiadała. Częściej jednak ziemska woda ma nieco inny skład izotopowy niż woda w chondrytach. To zaś oznacza, że oprócz nich musi istnieć w Układzie Słonecznym co najmniej jeszcze jedno źródło ziemskiej wody.
      Naukowcy pracujący pod kierunkiem specjalistów z University of Glasgow przyjrzeli się teraz planetoidom klasy S, które znajdują się bliżej Słońca niż planetoidy C. Przeanalizowali próbki pobrane z asteroidy Itokawa i przywiezione na Ziemię w 2010 roku przez japońską sondę Hayabusa. Dzięki najnowocześniejszym narzędziom byli w stanie przyjrzeć się strukturze atomowej poszczególnych ziaren próbki i zbadać pojedyncze molekuły wody. Wykazali, że pod powierzchnią Itokawy, w wyniku procesu wietrzenia, powstały znaczne ilości wody. Odkrycie to wskazuje, że w rodzącym się Układzie Słonecznym pod powierzchnią ziaren pyłu tworzyła się woda. Wraz z pyłem opadała ona na Ziemię, tworząc z czasem oceany.
      Wiatr słoneczny to głównie strumień jonów wodoru i helu, które bez przerwy przepływają przez przestrzeń kosmiczną. Kiedy jony wodoru trafiały na powierzchnię pozbawioną powietrza, jak asteroida czy ziarna pyłu, penetrowały ją na głębokość kilkudziesięciu nanometrów i tam mogły wpływać na skład chemiczny skład i pyłu. Z czasem w wyniku tych procesów jony wodoru mogły łączyć się z atomami tlenu obecnymi w pyle i skałach i utworzyć wodę.
      Co bardzo ważne, taka woda pochodząca z wiatru słonecznego, składa się z lekkich izotopów. To zaś mocno wskazuje, że poddany oddziaływaniu wiatru słonecznego pył, który opadł na tworzącą się Ziemię, jest brakującym nieznanym dotychczas źródłem wody, stwierdzają autorzy badań.
      Profesor Phil Bland z Curtin University powiedział, że dzięki obrazowaniu ATP (Atom Probe Tomography) możliwe było uzyskanie niezwykle szczegółowego obrazu na głębokość pierwszych 50 nanometrów pod powierzchnią ziaren pyłu Itokawy, który okrąża Słońce w 18-miesięcznych cyklach. Dzięki temu zobaczyliśmy, że ten fragment zwietrzałego materiału zawiera tyle wody, że po przeskalowaniu było by to około 20 litrów na każdy metr sześcienny skały.
      Z kolei profesor John Bradley z University of Hawai‘i at Mānoa przypomniał, że jeszcze dekadę temu samo wspomnienie, że źródłem wody w Układzie Słonecznym może być wietrzenie skał spowodowane wiatrem słonecznym, spotkałoby się z niedowierzaniem. Teraz wykazaliśmy, że woda może powstawać na bieżąco na powierzchni asteroidy, co jest kolejnym dowodem na to, że interakcja wiatru słonecznego z pyłem zawierającym tlen prowadzi do powstania wody.
      Pył tworzący mgławicę planetarną Słońca był poddawany ciągłemu oddziaływaniu wiatru słonecznego. A z pyłu tego powstawały planety. Woda tworzona w ten sposób jest zatem bezpośrednio związana z wodą obecną w układzie planetarnym, dodają autorzy badań.
      Co więcej, odkrycie to wskazuje na obfite źródło wody dla przyszłych misji załogowych. Oznacza to bowiem, ze woda może znajdować się w na pozornie suchych planetach. Jednym z głównych problemów przyszłej załogowej eksploracji kosmosu jest problem znalezienia wystarczających ilości wody. Sądzimy, że ten sam proces wietrzenia, w wyniku którego woda powstała na asteroidzie Itokawa miał miejsce w wielu miejscach, takich jak Księżyc czy asteroida Westa. To zaś oznacza, że w przyszłości astronauci będą mogli pozyskać wodę wprost z powierzchni planet, dodaje profesor Hope Ishii.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA kończy przygotowania do startu DART, pierwszej w historii misji, której celem jest przetestowanie technologii obrony Ziemi przed asteroidami. Zatankowany pojazd czeka na połączenie z rakietą nośną. Celem misji jest asteroida Dimorphos, a jej początek zaplanowano na 23 listopada.
      Dimorphos to niewielka asteroida o średnicy ok. 150 metrów, krążąca wokół większej nazwanej Didymos (ok. 800 m.). Zbliżą się one do Ziemi w roku 2022, a następnie w roku 2024. Pojazd DART (Double Asteroid Redirection Test) ma roku rozbić się o powierzchnię Dimorphosa, minimalnie zmieniając orbitę asteroidy. W chwili uderzenia DART będzie pędził z prędkością 21 500 km/h.
      Ani Dimorphos ani Didymos nie zagrażają Ziemi. DART ma udowodnić, że jest w stanie samodzielnie zbliżyć się do asteroidy i w nią uderzyć. Następnie naukowcy, używając naziemnych teleskopów, zbadają wpływ kolizji na obie asteroidy. Pozwoli to na poprawienie modeli opracowywanych na potrzeby przyszłych technologii obrony planety.
      DART będzie pierwszym testem tzw. impaktora kinetycznego. To technika polegająca na celowym rozbiciu pojazdu o asteroidę, by zmienić jej trajektorię. Sądzimy, że obecnie jest to najbardziej zaawansowana technologicznie metoda obrony Ziemi. Dzięki niej poprawimy modele komputerowe dotyczące wpływu impaktora kinetycznego na asteroidę. Przyda się nam to w przyszłości, gdy Ziemi naprawdę będzie coś zagrażało, mówi Lindley Johnson, pierwszy w historii Planetary Defense Officer.
      Pojazd DART wyposażono w wiele prototypowych technologii, w tym opracowywany na potrzeby przyszłych misji w głębokich częściach kosmosu silnik jonowy NEXT-C czy udoskonaloną antenę do komunikacji z Ziemią. Jedynym instrumentem naukowym, jaki znalazł się na pokładzie DART jest kamera nawigacyjna DRACO. Taka sama kamera jest od niedawna używana na Międzynarodowej Stacji Kosmicznej, a DART jest pierwszą misją, który użyje jej do nawigacji. Również i DRACO będzie wykorzystywana w przyszłych misjach.
      Na DART zainstalowano też rozwijalne panele słoneczne, a na jego pokładzie znalazł się miniaturowy 14-kilogramowy włoski satelita LICIACube. Mały satelita oddzieli się od DART na 10 dni przed jego uderzeniem w Dimorphosa. Zadaniem LICIACube jest obserwowanie za pomocą dwóch kamer skutków uderzenia w asteroidę. Trzy minuty po kolizji mały satelita przeleci za Dimorphosa, rejestrując zarówno materiał wyrzucony w wyniku zderzenie, jak i krater utworzony na powierzchni asteroidy oraz te części obu asteroid, które od strony DAT nie będą widoczne.
      Pojazd DART został już zatankowany 50 kilogramami hydrazyny oraz 60 kilogramami ksenonu dla silnika NEXT-C. Jutro rozpocznie się proces instalowania DART na rakiecie Falcon 9 firmy Space X. Na dzień przed startem rakieta z DART-em wyjedzie z hangaru i zostanie przetransportowana na stanowisko. Start odbędzie się z Vandenberg Space Force Base w Kalifornii.
      Technologia kinetycznego impaktora to jedno z proponowanych rozwiązań obrony Ziemi przed planetami. Więcej o programie ochrony Ziemi pisaliśmy w artykułach Znamy już ponad 10 000 NEO oraz Szef NASA zaleca modlitwę. Ostatnio zaś przeprowadzono wyliczenia, z których dowiadujemy się, że broń atomowa może uchronić Ziemię przed asteroidami. Jednak z innych badań wynika, że obronienie Ziemi będzie trudniejsze, niż dotychczas sądziliśmy.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Bliska Ziemi asteroida Kamo`oalewa może być fragmentem Księżyca, uważają naukowcy z University of Arizona, Lowell Observatory i Planetary Science Institute. Kamo`oalewa to quasi-księżyc (quasi-satelita) Ziemi. Pozostaje w pobliżu Ziemi i wraz z nią okrąża Słońce, ale nie jest powiązany grawitacyjnie z Ziemią. Niewiele wiemy o quasi-satelitach Ziemi.
      Kamo`oalewa została odkryta w 2016 roku przez obserwatorium PanSTARRS na Hawajach. Zbliża się do Ziemi na odległość 14,5 miliona kilometrów, a jej średnica wynosi 46–60 metrów. Obiekt widoczny jest z Ziemi wyłącznie przez kilka tygodni w roku licząc od początku kwietnia. Jako, że jest mały i nie świeci własnym światłem, obserwować go można tylko przez największe teleskopy.
      Astronomowie z USA zauważyli właśnie, że spektrum światła odbijanego przez asteroidę jest takie, jak spektrum światła odbijanych przez próbki Księżyca przywiezione przez misję Apollo. To sugeruje, że mamy tutaj do czynienia z fragmentem Srebrnego Globu.
      Naukowcy nie wiedzą, w jaki sposób fragment mógł uwolnić się z Księżyca. Jedną z przyczyny tego braku wiedzy, jest fakt, że nie mieliśmy okazji badać innych podobnych obiektów. Przejrzałem spektra wszystkich bliskich Ziemi asteroid, do których mieliśmy dostęp, i nie znalazłem niczego podobnego, mówi główny autor badań, świeżo upieczony magister Benjamin N. L. Sharkey z University of Arizona.
      Badanie asteroidy rozpoczęło się od gorącego sporu pomiędzy Sharkeyem, a jego promotorem, profesorem Vishnu Reddym. Przez kolejne lata po jego odkryciu uczeni obserwowali asteroidę. W 2020 roku nie mogli przeprowadzić obserwacji, gdyż z powodu COVID-19 zamknięto obserwatorium Large Binocular Telescope. Gdy w bieżącym roku przeprowadzono badania, uczeni trafili na ostatni element układanki. Wiosną, po przeprowadzeniu obserwacji stwierdziliśmy, że księżycowe pochodzenie tej asteroidy jest bardziej prawdopodobne, niż inne jej źródła, mówi Sharkey.
      Wskazówką była też orbita Kamo`oalewa. Jest ona podobna do orbity Ziemi, ale nie odpowiada orbitom innych asteroid bliskich Ziemi. Jest bardzo mało prawdopodobne, by typowa asteroida bliska Ziemi mogła zmienić orbitę na taką, jaką ma Kamo`oalewa, mówi współautor badań, profesor Renu Malhotra. Nie pozostałaby bowiem na takiej orbicie zbyt długo. Maksymalnie przez jakieś 300 lat. Tymczasem szacujemy, że Kamo`oalewa znajduje się na obecnej orbicie od około 500 lat.
      Badania nad asteroidą utrudnia jej mała jasność. Jest ona 4 miliony razy słabiej widoczna, niż najsłabiej świecąca gwiazda widoczna gołym okiem. Jej badanie było możliwe dzięki potędze 8,4-metrowych luster Large Binocular Telescope, dodaje Al Conrad, który pracuje przy wspomnianym instrumencie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...