Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Od miesiąca NASA zmaga się z awarią Teleskopu Hubble'a

Recommended Posts

NASA od miesiąca pracuje nad przywróceniem prawidłowej pracy Teleskopu Hubble'a. Wczoraj udało się uruchomić Wide Field Camera 3. To najważniejszy, najczęściej używany element teleskopu. Jest on używany przez ponad 30% czasu pracy Hubble'a. To jednocześnie drugi – po Advanced Camera for Surveys –instrument naukowy Hubble'a, który podjął pracę po ostatniej awarii. Ostatniej, gdyż doszło do niej zaledwie 3 miesiące po tym, jak teleskop został uruchomiony po poprzednich kłopotach.

Do ostatniej awarii doszło 23 października. Pojawił się wówczas kod błędu wskazujący na utratę sygnału synchronizującego pracę instrumentów. Zespół naziemny zrestartował instrumenty i następnego dnia Hubble podjął normalną pracę. Nie na długo jednak. Już 25 października pojawił się sygnał świadczący o masowej utracie danych synchronizacyjnych, w związku z czym wszystkie instrumenty naukowe automatycznie przełączyły się w tryb bezpieczny.

Od tamtej pory trwają prace nad przywróceniem funkcjonowania Teleskopu. Na szczęście od 1 listopada nie pojawił się żaden kolejny sygnał świadczących o nieprawidłowościach.

Wczoraj inżynierowie zdecydowali się na uruchomienie Wide Field Camera 3. Wprowadzają też zmiany w konfiguracji instrumentu. Są one na bieżąco testowana na naziemnych symulatorach. Zmiany mają na celu spowodowanie, by urządzenie tolerowało pewną liczbę sygnałów o utracie synchronizacji i mimo ich pojawienia się, by pracowało normalnie. Zmiany takie zostaną zastosowane najpierw w innym instrumencie, Cosmic Origins Spectrograph. Mają one chronić jego niezwykle czuły detektor pracujący w zakresie dalekiego ultrafioletu. Wprowadzanie tych zmian oraz testy potrwają jeszcze kilka tygodni.
Pozostałe instrumenty naukowe Hubble'a nadal znajdują się w trybie bezpiecznym, a cała reszta teleskopu kosmicznego działa prawidłowo.

Teleskop Kosmiczny Hubble'a pracuje w przestrzeni kosmicznej już ponad 31,5 roku. To jeden z najważniejszych instrumentów naukowych w dziejach i jedyny teleskop kosmiczny, który zbudowano z myślą o jego serwisowaniu. Dotychczas odbyło się doń 5 misji serwisowych. Ostatnia miała miejsce w 2009 roku. Od czasu zakończenia programu lotów wahadłowców nie ma jednak czym polecieć do Hubble'a. W 2017 roku pojawiła się informacja, że być może planowana jest kolejna misja serwisowa.

Dotychczas jej nie zrealizowano, jednak można przypuszczać, że wcześniej czy później taka misja się odbędzie. NASA chce bowiem, by teleskop Hubble'a pracował jak najdłużej, być może nawet do roku 2040. Zapewne więc musi brać pod uwagę konieczność serwisowania urządzenia. Wystrzeliwane zaś w międzyczasie nowe teleskopy kosmiczne będą uzupełniały Hubble'a.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      NASA informuje o wykryciu problemów w unikalnym instrumencie naukowym Teleskopu Kosmicznego Jamesa Webba. Pod koniec sierpnia zauważono nieprawidłowości w jednym z trybów pracy MIRI. Po analizie problemu 6 września powołany został specjalny zespół, który ma zająć się jego rozwiązaniem. Zaprzestano też korzystania ze wspomnianego trybu.
      Mid-Infared Instrument (MIRI) składa się z kamery i spektrografu pracujących w średniej podczerwieni. To zakresy od 5 do 28 mikrometrów. Pozostałe instrumenty teleskopu pracują w bliskiej podczerwieni.
      MIRI to bardzo czuły instrument, zobaczy przesunięte ku czerwieni światło odległych galaktyk, tworzących się gwiazd i słabo widocznych komet. Będzie też mógł obserwować Pas Kuipera. Kamera MIRI jest zdolna do wykonania podobnych szerokokątnych zdjęć, z jakich zasłynął Hubble. A jego spektrograf umożliwi poznanie wielu cech fizycznych odległych obiektów. MIRI korzysta z trzech macierzy czujników zbudowanych z krzemu wzbogaconych arsenem. MIRI, by ujawnić swoje niezwykłe możliwości, musi mieć zapewnioną temperaturę -266,15 stopni Celsjusza.
      Urządzenie działa w czterech trybach. Obrazowanie (imaging) pozwala na obserwowanie niemal wszystkich obiektów, do badania których zbudowany został Webb. W trybie tym rejestrowane są fale od długości od 5 do 27 mikrometrów. Pozwala to np. na obserwowanie pyłu i zimnego gazu w regionach gwiazdotwórczych i poszerza ogólne możliwości obserwacyjne Webba, dostarczających dodatkowych informacji. W trybie spektrostroskopii o niskiej rozdzielczości (low-resolution spectroscopy) MIRI rejestruje fale o długości 5–12 mm. Może badać słabiej świecące obiekty niż podczas pracy w spektroskopii średniej rozdzielczości. W trybie tym można np. analizować powierzchnię księżyca Plutona, Charona. Wspomniana już spektroskopia o średniej rozdzielczości (medium-resolution spectroscopy) umożliwia obserwację światła w zakresie 5–28,5 mm. To właśnie w tym zakresie uzyskujemy silny sygnał z pyłu i molekuł. Dzięki temu możemy badać np. skład dysków protoplanetarnych. Ostatni z zakresów pracy, obrazowanie koronograficzne, pozwala na bezpośrednie wykrywanie planet pozasłonecznych i badanie pyłowych dysków wokół gwiazd.
      Pod koniec sierpnia zauważono, że mechanizm przełączona na tryb spektroskopii o średniej rozdzielczości stawia większy opór niż powinien. Dlatego też zdecydowano się na rezygnację w pracy w tym trybie do czasu rozwiązania problemu. Pozostałe tryby MIRI oraz całe obserwatorium pracują bez zakłóceń.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W nocy z poniedziałku na wtorek NASA pokazała pierwsze pełnokolorowe zdjęcie z Teleskopu Kosmicznego Jamesa Webba. Zobaczyliśmy na nim oddaloną o 4,6 miliarda lat świetlnych gromadę galaktyk SMACS 0723. Jej grawitacja zagina światło z obiektów znajdujących się poza gromadą, powiększając je, dzięki czemu możemy zajrzeć jeszcze głębiej w przestrzeń kosmiczną. Teraz NASA zaprezentowała kolejne zdjęcia.
      Możemy więc zobaczyć Mgławicę Carina, jedną z największych i najjaśniejszych mgławic. Znajduje się ona w odległości około 7600 lat świetlnych od Ziemi, w Gwiazdozbiorze Carina. Mgławica Carina jest domem licznych masywnych gwiazd, wielokrotnie większych od Słońca. Widoczne na zdjęciu „góry” i „wąwozy” to krawędź regionu gwiazdotwórczego NGC 3324. Najwyższe „szczyty” mają tutaj około 7 lat świetlnych długości. Webb pokazał miejsca narodzin gwiazd oraz same gwiazdy, których nie było widać w świetle widzialnym.
      Webb pokazał nam też Mgławicę Pierścień Południowy, zwaną też Rozerwaną Ósemką. To mgławica planetarna, rozszerzająca się chmura gazu, która otacza umierającą gwiazdę. Rozerwana Ósemka znajduje się w odległości około 2000 lat świetlnych od Ziemi i ma średnicę niemal pół roku świetlnego.
      Teleskop Webba jest pierwszym instrumentem, który pokazał nam słabiej świecącą gwiazdę znajdującą się wewnątrz Mgławicy Pierścień Południowy. To właśnie ta gwiazda, z której od tysięcy lat wydobywają się pył i gaz, utworzyła mgławicę. Webb umożliwi astronomom dokładne badanie mgławic planetarnych. Krajobraz jest zdominowany przez dwie gwiazdy krążące wokół siebie po ciasnej orbicie. Gwiazdy te wpływają na rozkład gazu i pyłu rozprzestrzeniającej się z jednej z nich, tworząc nieregularne wzory.
      Na kolejnym zdjęciu widzimy Kwintet Stephana, pierwszą kompaktową grupą galaktyk jaką poznała ludzkość. Odkryty on został w 1877 roku. Cztery z pięciu tworzących go galaktyk jest ze sobą powiązanych grawitacyjne. Kwintet Stephana znajduje się w odległości 290 milionów lat świetlnych od nas.
      Kwintet Stephana to największy z dotychczasowych obrazów dostarczonych przez Webba. Składa się on z ponad 150 milionów pikseli i został złożony z niemal 1000 zdjęć. Webb sfotografował nawet fale uderzeniowe wstrząsające kwintentem w wyniku przechodzenia przez niego jednej z galaktyk, NGC 7318B.
      Mimo że struktura zwana jest kwintetem, to tylko cztery galaktyki (NGC 7317, NGC 7318A, NGC 7318B i NGC 7319) są powiązane grawitacyjnie i znajdują się 290 milionów lat świetlnych od nas. Piąta z nich, NGC 7320, znajduje się w odległości 40 milionów lat świetlnych od Ziemi.
      Teleskop dostarczył też obraz spektroskopowy planety WASP-96b. To gorący gazowy olbrzym oddalony o 1150 lat świetlnych od Ziemi. Okrąża swoją gwiazdę w 3,4 doby i ma masę o połowę mniejszą od masy Jowisza. Dane potwierdzają obecność wody w atmosferze WASP 96b, naukowcy zaobserwowali w nich dowody na obecność mgły oraz chmur, których nie widzieliśmy podczas wcześniejszych obserwacji. Dokładniejsza analiza danych pozwoli na okreslenie ilości pary wodnej, węgla, tlenu oraz ocenę zmian temperatury atmosfery w zależności od jej wysokości nad planetą.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Administrator NASA, Bill Nelson, zapowiedział, że 12 lipca Agencja pokaże zdjęcie najbardziej odległego obiektu w przestrzeni kosmicznej, jakie kiedykolwiek wykonano. Będzie to możliwe, oczywiście, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST). Na tej samej konferencji prasowej poinformowano, że JWST będzie mógł pracować nie przez 10, a przez 20 lat.
      Obecnie najstarszym i najodleglejszym znanym nam obiektem w kosmosie jest galaktyka HD1, z której światło biegło do nas 13,5 miliarda lat. Powstała ona 330 milionów lat po Wielkim Wybuchu. Eksperci sądzą, że Teleskop Webba z łatwością pobije ten rekord. Jakby jeszcze tego było mało, 12 lipca NASA pokaże pierwsze wykonane przez Webba zdjęcia spektroskopowe egzoplanety. Astronom Nestor Espinoza ze Space Telescope Science Institute mówi, że dotychczasowe możliwości spektroskopowego badania egzoplanet były niezwykle ograniczone w porównaniu z tym, co oferuje Webb. To tak, jakbyśmy  byli w bardzo ciemnym pokoju i mogli wyglądać na zewnątrz przez małą dziurkę w ścianie. Webb otwiera przed nami wielkie okno, dzięki któremu zobaczymy wszystkie szczegóły.
      Webb może badać obiekty w Układzie Słonecznym, atmosfery planet okrążających inne gwiazdy, dając nam wskazówki odnośnie tego, czy te atmosfery są podobne do atmosfery Ziemi. Może nam pomóc w odpowiedzi na pytania, skąd przybyliśmy, kim jesteśmy, co jeszcze jest w kosmosie. Poznamy też odpowiedzi na pytania, których jeszcze nie potrafimy zadać, mówił Nelson.
      Zastępca Nelsona, Pam Melroy, poinformowała, że dzięki idealnemu wystrzeleniu rakiety nośnej przez firmę Arianespace, Teleskop Webba będzie mógł pracować przez 20 lat, a nie przez 10, jak planowano. Tych 20 lat pozwoli nam przeprowadzić więcej badań i jeszcze bardziej pogłębić naszą wiedzę, gdyż będziemy mieli okazję dłużej prowadzić obserwacje, dla których podstawą będą wcześniejsze obserwacje Webba, mówiła Melroy.
      Planując czas trwania misji Webba NASA musiała brać pod uwagę ilość paliwa, które teleskop będzie musiał zużyć w czasie podróży do celu swojej podróży, punktu libracyjnego L2. Dzięki niezwykle precyzyjnemu wystrzeleniu rakiety nośnej, teleskop zużył na korekty kursu znacznie mniej paliwa, niż planowano. Teraz wiemy, że pozostało mu go na 20 lat pracy. Paliwo jest potrzebne Teleskopowi do korekty kursu na orbicie punku L2. Siły grawitacyjne oddziałujące na orbicie L2 powodują, że znajdujące się tam obiekty mają tendencję do opuszczenia tej orbity i zajęcia własnej orbity wokół Słońca. Dlatego mniej więcej co 3 tygodnie Webb będzie uruchamiał silniki i korygował orbitę. Teraz wiemy, że będzie mógł to robić przez kolejnych 20 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W niedawno opublikowanym artykule naukowcy i inżynierowie z NASA opisali szczegóły misji DAVINCi (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging), pierwszej misji, w ramach której wykonany zostanie przelot oraz zrzucenie próbnika w atmosferę Wenus. Misja ma wystartować w czerwcu 2029 roku, a wejście w atmosferę planety będzie miało miejsce dwa lata później.
      DAVINCI to przede wszystkim laboratorium chemiczne, którego zadaniem będzie zbadanie poszczególnych warstw atmosfery Wenus. Misja wykona też pierwsze obrazowanie górzystego krajobrazu planety i zmapuje skład skał oraz szczegóły powierzchni ze szczegółami, jakich nie można dojrzeć z orbity planety. Naukowcy mają nadzieję, że w najgłębszych warstwach atmosfery próbnik wykryje obecność gazów, które dotychczas nie zostały odkryte. Interesuje ich przede wszystkim stosunek różnych izotopów wodoru, co ma pozwolić na określenie historii obecności wody na Wenus.
      CRIS, pojazd, który poleci do Wenus, zostanie wyposażony w dwa instrumenty naukowe. W czasie przelotu nad planetą będą one badały chmury oraz topografię Wenus. Zrzucona zostanie też niewielka sonda z pięcioma instrumentami. W czasie opadania na powierzchnię, będą one dokonywały precyzyjnych pomiarów.
      Zdobyte w ten sposób dane chemiczne, środowiskowe i zdjęcia wykonane podczas opadania sondy dostarczą nam informacji na temat atmosfery Wenus oraz interakcji pomiędzy nią, a powierzchnią górskiego obszaru Alpha Regio, który jest dwukrotnie większy od Teksasu, stwierdził Jim Garvin, główny naukowiec misji. Dzięki tym pomiarom określimy historię atmosfery, wykryjemy różne rodzaje skał na powierzchnię, rozejrzymy się za śladami erozji i innych procesów formujących powierzchnię.
      DAVINCi trzykrotnie skorzysta z asysty grawitacyjnej Wenus, dzięki czemu zaoszczędzi paliwa na zmianę prędkości i kierunku lotu. Podczas pierwszych dwóch przelotów pojazd przeprowadzi badania w ultrafiolecie i bliskiej podczerwieni, zbierając w tym czasie 60 gigabajtów danych. Podczas trzeciego przelotu w atmosferę zrzucona zostanie sonda, które będzie prowadziła badania naukowe i przesyłała dane na Ziemię.
      Do pierwszego przelotu w pobliżu Wenus dojdzie już 6,5 miesiąca po starcie misji. W czerwcu 2031roku, gdy CRIS będzie 2 dni lotu od Wenus, oddzieli się od niego tytanowa sonda o średnicy 1 metra, wyposażona we własny system napędowy. Jej interakcja z atmosferą Wenus rozpocznie się na wysokości ok. 120 km nad powierzchnią planety.Na wysokości 67 kilometrów sonda odrzuci osłonę termiczną i rozpocznie badania naukowe. Opadanie na powierzchnie potrwa godzinę. W tym czasie prowadzone będą analizy chemiczne składu atmosfery na różnych wysokościach, wykonane zostaną też setki zdjęć. Sonda wyląduje w górach Alpha Regio, jednak nie oczekujemy od niej, że będzie działała, gdyż wszystkie zadania ma wykonać w czasie opadania. Jeśli jednak przetrwa lądowanie – a w powierzchnię planety uderzy z prędkością ok. 43 km/h – to w idealnych warunkach powinna działać 17–18 minut, wyjaśnia Stephanie Getty, zastępczyni głównego naukowca misji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA zdecydowała o wydłużeniu 8 misji kosmicznych prowadzonych przez Planetary Science Division. Wydłużone zostaną misje Mars Odyssey, Mars Reconnaissance Orbiter, MAVEN, Mars Science Laboratory (łazik Curiosity), InSight, Lunar Reconnaissance Orbiter, OSIRIS-REx i New Horizons. Jeśli wykonujące je pojazdy będą równie sprawne jak dotychczas, to popracują jeszcze przez kolejne trzy lata. Wyjątkiem są OSIRIS-REx oraz InSight.
      Propozycji wydłużenia każdej z misji przyjrzał się niezależny zespół ekspertów z instytucji naukowych, przemysłu oraz NASA. W pracach tych zespołów brało udział łącznie ponad 50 specjalistów. Nad ich pracami czuwało dwóch niezależnych przewodniczących-recenzentów.
      Wydłużenie misji daje nam możliwość uzyskanie dodatkowych korzyści z olbrzymich inwestycji poczynionych przez NASA, pozwalając na osiągnięcie kolejnych celów naukowych znacznie niższym kosztem niż koszt organizowania nowych misji, mówi Lori Glaze, dyrektor Planetary Science Division, któremu podlegają te misje.
      Misja OSIRIS-REx, po przysłaniu w przyszłym roku próbek asteroidy na Ziemię, zmieni się – o czym wcześniej informowaliśmy – w OSIRIS-APEX i poleci badać asteroidę Apophis. Potrwa ona kolejnych 9 lat. Natomiast nowym zadaniem misji MAVEN (Mars Atmosphere and Volatile Evolution) będzie zbadania interakcji pomiędzy atmosferą a polem magnetycznym Marsa w czasie najbliższego maksimum słonecznego.
      InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), która wylądowała na Marsie w 2018 roku, to jedyna pozaziemska stacja sejsmiczna. W ramach wydłużonej misji nadal będzie monitorowała aktywność sejsmiczną oraz pogodę Czerwonej Planety. Niestety, na panelach słonecznych urządzenia nagromadziło się sporo pyłu, przez co generują one niewiele energii. Jeśli nie zostaną one oczyszczone przez jeden z wielu wirów pyłowych, InSight popracuje jeszcze co najwyżej kilka miesięcy.
      Lunar Reconnaissance Orbiter krąży na orbicie Księżyca od 2009 roku. NSA już po raz kolejny przedłuży jego misję polegającą na badaniu powierzchni i geologii Srebrnego Globu. Pojazd będzie obserwował nowe obszary Księżyca, dostarczy niezwykle szczegółowych fotografii i będzie wsparciem dla planowanego powrotu ludzi na Księżyc.
      Mars Science Laboratory i wchodzący w skład misji łazik Curiosity pracują na Marsie od 2012 roku. Łazik przebył już trasę o długości 27 km, badając Krater Gale. W ramach czwartego już wydłużenia misji Curiosity ma wspiąć się wyżej i zbadać bogate w siarkę warstwy, które mogą zdradzić wiele szczegółów na temat obecności wody na Czerwonej Planecie.
      NASA zdecydowała też o wydłużeniu misji New Horizons. To sonda, która w 2015 roku przeleciała w pobliżu Plutona, a w 2019 przeszła do historii odwiedzając Arrokoth (Ultima Thule), najdalszy zbadany przez ziemski pojazd obiektu Układu Słonecznego.. Misja zostanie przedłużona po raz drugi. Zadanie sondy będzie polegało na dalszym badaniu obszarów położonych w odległości 63 jednostek astronomicznych od Ziemi. Przypomnijmy, że jednostka astronomiczna to średnia odległość pomiędzy Słońcem a Ziemią. New Horizons może potencjalnie przeprowadzić multidyscyplinarne obserwacje związane z Układem Słonecznym, które wchodzą w zakres obowiązków Wydziału Helioferycznego i Wydziału Astrofizycznego NASA. Szczegóły tych zadań mają zostać podane w przyszłości.
      Dwie ostatnie misje są związane z Marsem. Mars Odyssey od 2001 roku znajduje się na orbicie Marsa, a w roku 2010 stała się najdłużej działającą misją na Marsie. Obecnie jest to najdłużej działający w historii pojazd znajdujący się na orbicie planety innej niż Ziemia. Kolejne zadania, jakie jej przydzielono to nowe badania termiczne skał i lodu pod powierzchnią Marsa, badanie promieniowania oraz kontynuacja obserwacji klimatycznych. Dodatkowo Mars Odyssey zapewnia łączność długodystansową pomiędzy Ziemią a innymi marsjańskimi misjami. Pojazd ma jednak ograniczoną ilość paliwa, więc czas trwania jego misji może być ograniczony.
      Wokół Czerwonej Planety krąży też Mars Reconnaissance Orbiter, który dostarczył już olbrzymich ilości informacji na temat procesów zachodzących na powierzchni. W ramach 6. już przedłużenia misji MRO ma badań ewolucję powierzchni, lód, aktywność geologiczną, atmosferę i klimat Marsa. MRO również spełnia rolę stacji przekaźnikowej pomiędzy Marsem a Ziemią. Wraz z decyzją o wydłużeniu misji MRO postanowiono całkowicie wyłączyć instrument CRISM (Compact Reconnaissance Imaging Spectrometer for Mars). To spektrometr pracujący w świetle widzialnym i bliskiej podczerwieni, który dostarczał szczegółowych informacji na temat minerałów na powierzchni planety. Doszło w nim do awarii jednego z elementów chłodzących, przez co jeden z jego dwóch spektrometrów przestał działać. CRISM zostanie więc w ogóle wyłączony.
      Obecnie w Układzie Słonecznym znajduje się 14 pojazdów zarządzanych przez Planetary Science Division. Wydział pracuje też nad przygotowaniem kolejnych 12 misji i bierze udział w 7 innych, w których jest partnerem agencji kosmicznych z innych krajów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...