Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Nowy znacznik do obrazowania komórek nowotworowych

Rekomendowane odpowiedzi

Międzynarodowy zespół naukowców, w którym biorą udział uczeni z Narodowego Centrum Badań Jądrowych w Świerku, zaproponował wykorzystanie nowego związku chemicznego do obrazowania nowotworów prostaty i piersi. [99mTc]Tc-DB15 składa się ze stosowanego w diagnostyce radioaktywnego izomeru technetu Tc-99m, związanego z antagonistą (czyli substancją blokującą receptor) receptora GRPR występującego w komórkach niektórych rodzajów nowotworów.

Użycie związku [99mTc]Tc-DB15 pozwala na wykrycie nowotworu dzięki zastosowaniu Tc-99m, który podczas rozpadu emituje fotony o energiach w zakresie gamma. Fotony te są następnie rejestrowane w tomografie SPECT. Urządzenie to, podobnie do PET, obserwuje fotony pochodzące z rozpadu Tc-99m i po opracowaniu specjalnym algorytmem generuje trójwymiarowy obraz pacjenta z wyraźnie widocznymi miejscami emisji fotonów pochodzących z rozpadu radioizotopu. Technet-99m, przyłączony do antagonisty receptora, kumuluje się w komórkach o zwiększonej gęstości GRPR, czyli w komórkach rakowych. W efekcie pozwala to na zlokalizowanie i określenie aktywności komórek nowotworowych. Antagoniści receptorów komórkowych zastosowani w diagnostyce mogą też potencjalnie być wykorzystani w teranostyce, czyli terapii połączonej z diagnostyką, wykorzystując promieniowanie jonizujące w celu zabicia komórek nowotworu.

Wstępne badania nad nowym znacznikiem, przeprowadzone in vitro na komórkach raka piersi oraz raka prostaty pokazały, że komórki rakowe dobrze gromadzą znacznik. Dalsze badania, in vivo, przeprowadzono u myszy z wszczepionymi komórkami raka prostaty i piersi, wykazującymi obecność GRPR. Wykazano, że po podaniu preparat w krótkim czasie skupia się w komórkach nowotworowych. Po potwierdzeniu bezpieczeństwa stosowania badanego leku poddano tej metodzie obrazowania dwie pacjentki chorujące na nowotwór raka piersi, którego komórki posiadały receptory GRPR. Badania przeprowadzono na podstawie protokołu badawczego zatwierdzonego przez Komisję Bioetyczną Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu. Pacjentki wyraziły świadomą zgodę na udział w badaniach.

Współczesna medycyna wykorzystuje już bardzo podobne strategie, do zaproponowanej przez nas, jak choćby leczenie nowotworów piersi, posiadających receptory HER2 – wyjaśnia profesor Renata Mikołajczak, współautorka badań. Nowa procedura, oparta o wykorzystanie związków antagonistycznych do receptorów GRPR, byłaby kolejną spersonalizowaną metodą w leczeniu konkretnego typu komórek rakowych, a zwiększanie liczby technik pozwala na precyzyjne i skuteczne leczenie różnych rodzajów nowotworów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Reaktor badawczy MARIA w trybie ekspresowym zmienił harmonogram pracy, by zapobiec brakom w dostawach medycznego molibdenu-99 (Mo-99). Działanie miało związek z usterką w holenderskim reaktorze HFR, który należy do grona kilku światowych dostawców tego radionuklidu.
      Molibden-99 jest podstawowym radioizotopem służącym do uzyskiwania radioaktywnego technetu. Ten zaś jest wykorzystywany w większości procedur medycyny nuklearnej. Molibden-99 jest produkowany w reaktorach badawczych na drodze napromieniania neutronami tarcz uranowych.
      W zeszłym tygodniu przed jednym z rutynowych uruchomień reaktora HFR wykryto usterkę w obiegu chłodzenia (przed każdym kolejnym uruchomieniem dokonuje się kontroli wszystkich instalacji). Z tego względu nie można go było uruchomić zgodnie z planem, czyli 20 stycznia. Okazało się jednak, że już 21 stycznia produkcję HFR przejął reaktor MARIA w Otwocku-Świerku pod Warszawą.
      20 stycznia byliśmy w Świerku w trakcie spotkania z naszymi partnerami produkującymi medyczny molibden-99, kiedy jednemu z nich zadzwonił telefon - opowiada Paweł Nowakowski, dyrektor Departamentu Eksploatacji Obiektów Jądrowych w Narodowym Centrum Badań Jądrowych (NCBJ). Nasz gość odszedł na chwilę na bok, by odebrać połączenie i po chwili spytał, czy za dwa dni jesteśmy w stanie awaryjnie napromienić dodatkowe tarcze uranowe. Dobro pacjentów onkologicznych jest dla nas niezwykle ważne, więc zgodziłem się bez wahania. Jesteśmy również przygotowani do przeprowadzenia kolejnych napromieniań w najbliższych tygodniach.
      Jak podkreślono w komunikacie prasowym NCBJ, zespół ekspertów przeprowadził szczegółowe obliczenia optymalizujące konfigurację rdzenia MARII. Później zatwierdziła je Państwowa Agencja Atomistyki. Udało się to zrealizować w zaledwie parę godzin.
      Zadanie wykonano tak szybko, gdyż od 2010 r. MARIA jest przygotowana do napromieniania tarcz uranowych do produkcji molibdenu-99. W roku przeprowadza się kilka cykli.
      NCBJ zaznacza, że w razie nieplanowanych przestojów u głównych dostawców reaktor badawczy MARIA może zmienić harmonogram i zapełnić lukę.
      Warto podkreślić, że MARIA jest jednym z najważniejszych dostawców napromienianych tarcz uranowych do produkcji Mo-99, odpowiedzialnym za około 10% światowych dostaw.
       

       


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Porównanie trzech komercyjnych systemów sztucznej inteligencji wykorzystywanej w diagnostyce obrazowej raka piersi wykazało, że najlepszy z nich sprawuje się równie dobrze jak lekarz-radiolog. Algorytmy badano za pomocą niemal 9000 obrazów z aparatów mammograficznych, które zgromadzono w czasie rutynowych badań przesiewowych w Szwecji.
      Badania przesiewowe obejmujące dużą część populacji znacząco zmniejszają umieralność na nowotwory piersi, gdyż pozwalają na wyłapanie wielu przypadków na wczesnym etapie rozwoju choroby. W wielu takich przedsięwzięciach każde zdjęcie jest niezależnie oceniane przez dwóch radiologów, co zwiększa skuteczność całego programu. To jednak metoda kosztowna, długotrwała, wymagająca odpowiednich zasobów. Tutaj mogłyby pomóc systemy SI, o ile będą dobrze sobie radziły z tym zadaniem.
      Chcieliśmy sprawdzić, na ile dobre są algorytmy SI w rozpoznawaniu obrazów mammograficznych. Pracuję w wydziale radiologii piersi i słyszałem o wielu firmach oferujących takie algorytmy. Jednak trudno było orzec, jaka jest ich jakość, mówi Fridrik Strand z Karolinska Institutet.
      Każdy z badanych algorytmów to odmiana sieci neuronowej. Każdy miał do przeanalizowania zdjęcia piersi 739 kobiet, u których w czasie krótszym niż 12 miesięcy od pierwotnego badania wykryto raka piersi oraz zdjęcia 8066 kobiet, u których w czasie 24 miesięcy od pierwotnego badania nie wykryto raka piersi. Każdy z algorytmów miał ocenić zdjęcie w skali od 0 do 1, gdzie 1 oznaczało pewność, iż na zdjęciu widać nieprawidłową tkankę.
      Trzy systemy, oznaczone jako AI-1, AI-2 oraz AI-3 osiągnęły czułość rzędu 81,9%, 67,0% oraz 67,4%. Dla porównania, czułość w przypadku radiologów jako pierwszych interpretujących dany obraz wynosiła 77,4%, a w przypadku radiologów, którzy jako drudzy dokonywali opisu było to 80,1%. Najlepszy z algorytmów potrafił wykryć też przypadki, które radiolodzy przeoczyli przy badaniach przesiewowych, a kobiety zostały w czasie krótszym niż rok zdiagnozowane jako chore.
      Badania te dowodzą, że algorytmy sztucznej inteligencji pomagają skorygować fałszywe negatywne diagnozy postawione przez lekarzy-radiologów. Połączenie możliwości AI-1 z przeciętnym lekarzem-radiologiem zwiększało liczbę wykrytych nowotworów piersi o 8%.
      Zespół z Karolinska Institutet spodziewa się, że jakość algorytmów SI będzie rosła. Nie wiem, jak efektywne mogą się stać, ale wiem, że istnieje kilka sposobów, by je udoskonalić. Jednym z nich może być np. ocenianie wszystkich 4 zdjęć jako całości, by można było porównać obrazy z obu piersi. Inny sposób to porównanie nowych zdjęć z tymi, wykonanymi wcześniej, by wyłapać zmiany, mówi Strand.
      Pełny opis eksperymentu opublikowano na łamach JAMA Oncology.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na początku stycznia Departament Energii USA poinformował o wybraniu lokalizacji dla nowego potężnego urządzenia badawczego fizyki wysokich energii. Zderzacz Elektron-Jon (EIC) ma powstać w Brookhaven National Laboratory (NY) kosztem ok. 2 mld. dolarów. Dwa przeciwbieżne akceleratory zderzać będą elektrony z protonami lub z jonami atomowymi, z możliwością polaryzacji obu wiązek. Program badawczy planowanych eksperymentów współtworzą naukowcy z NCBJ.
      Nowe urządzenie pozwoli na lepsze zrozumienie budowy najmniejszych cegiełek materii i oddziaływań, dzięki którym ona istnieje - wyjaśnia profesor Lech Szymanowski z Narodowego Centrum Badań Jądrowych (NCBJ). Fizycy na całym świecie przygotowują program badawczy EIC i pracują nad optymalizacją projektu akceleratorów i eksperymentów korzystających z ich wiązek.
      Wśród badaczy przygotowujących nowe eksperymenty jest m.in. polska grupa fizyków teoretyków z Departamentu Badań Podstawowych NCBJ. Doktorzy Paweł Sznajder i Jakub Wagner wraz z kolegami z francuskiego CEA przygotowali platformę obliczeniową PARTONS, pozwalającą na generowanie przewidywań dla EIC w oparciu o istniejącą wiedzę teoretyczną na temat oddziaływań silnych. Wyniki uzyskane dzięki tej platformie oraz dzięki technikom obliczeniowym takim jak sieci neuronowe i algorytm genetyczny pozwalają na tworzenie precyzyjnych przewidywań dla EIC, ale także na ocenę jego oczekiwanego wpływu na zrozumienie struktury materii - opisuje dr Sznajder. Niezwykła precyzja planowanych eksperymentów po raz pierwszy umożliwi stworzenie trójwymiarowych, tomograficznych obrazów wnętrza protonu. Przygotowane przez nas narzędzie jest unikalne - uzupełnia dr Wagner. Udało nam się uzyskać i opublikować już kilka prac z pierwszymi wynikami, które powinny ułatwić analizę teoretyczną danych uzyskanych w EIC.
      Materia jądrowa nadal nie jest dokładnie poznana, a oddziaływania w niej zachodzące potrafimy opisywać jedynie w dużym przybliżeniu - przekonuje dr Tolga Altinoluk, realizujący w NCBJ grant Unii Europejskiej dotyczący fizyki ciężkich jonów w EIC. Zderzenia z użyciem ciężkich jonów umożliwiają badanie nowych stanów materii, o niespotykanej dotychczas gęstości gluonów - cząstek przenoszących oddziaływania silne, odpowiedzialnych za istnienie m.in. protonu.
      Badania teoretyczne oddziaływań silnych na najbardziej elementarnym poziomie mają w NCBJ wieloletnią tradycję, a nasi naukowcy należą do grona światowych ekspertów w tej dziedzinie. W 2021 roku instytut wraz z Uniwersytetem Warszawskim będzie organizować międzynarodowe spotkanie fizyków pracujących nad EIC, goszczące kilkuset najwybitniejszych specjalistów z całego świata.
      Więcej na temat projektu EIC można przeczytać w informacji na stronie BNL

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      European XFEL i Narodowe Centrum Badań Jądrowych (NCBJ) w Otwocku-Świerku pod Warszawą zamierzają ustanowić pierwsze ultraszybkie połączenie komputerowe Niemiec i Polski. Celem przedsięwzięcia jest wykorzystanie Centrum Superkomputerowego CIŚ w NCBJ do przetwarzania i analizy danych generowanych w European XFEL.
      Dedykowane połączenie komputerowe pomiędzy Hamburgiem i NCBJ będzie zapewniało szybkość transferu 100 gigabitów na sekundę (Gbit/s). Z wyjątkiem szybszego połączenia z DESY, to połączenie będzie około 100 razy szybsze niż obecne typowe połączenie internetowe European XFEL z innymi instytutami badawczymi. Dzięki niemu transfer danych dla średniego eksperymentu w obiekcie zajmuje około miesiąca . Dla porównania, szybkie łącza internetowe dla gospodarstw domowych zazwyczaj zapewniają około 250 Mb/s przy pobieraniu danych. Nowe połączenie będzie co najmniej 400 razy szybsze.
      W projekcie instalacji nowego szybkiego połączenia dla przesyłu danych, wraz z European XFEL i NCBJ, wezmą również udział: Niemiecka Krajowa Sieć Badań i Edukacji (DFN), Centrum Superkomputerowo-Sieciowe w Instytucie Chemii Bioorganicznej w Poznaniu (PCSS), Naukowa i Akademicka Sieć Komputerowa (NASK) oraz Deutsches Elektronen-Synchrotron (DESY). Pod koniec maja tego roku partnerzy podpisali protokół ustaleń, który posłuży jako podstawa i punkt wyjścia do ustanowienia nowego szybkiego połączenia. Można je w dużej mierze zbudować na istniejącej infrastrukturze technicznej, ale trzeba będzie dodać pewne szczególne elementy. Na przykład połączenie między niemieckimi i polskimi sieciami badawczymi będzie możliwe dzięki Uniwersytetowi Europejskiemu Viadrina we Frankfurcie nad Odrą i sąsiedniemu polskiemu miastu Słubice.
      Połączenie z NCBJ zapewni dodatkowe zasoby uzupełniające obecne zlokalizowane w Centrum Obliczeniowym DESY, gdzie wszystkie dane eksperymentalne z europejskiego XFEL były dotychczas analizowane i gdzie większość przetwarzania danych będzie nadal wykonywana.
      Dzięki laserowi rentgenowskiemu dostarczającemu do 27 000 impulsów na sekundę, najszybsze detektory urządzenia umożliwiają przechwytywanie do 8000 obrazów w wysokiej rozdzielczości na sekundę. W połączeniu z innymi danymi z lasera rentgenowskiego i jego instrumentów badawczych uzyskuje się ogromny strumień danych, wymagający specjalnego zarządzania i analizy w celu zapewnienia prawidłowego uzyskiwania informacji naukowych. Strumień danych może osiągnąć nawet wielkość 1 petabajta na tydzień w szczytowym czasie działania użytkownika, co odpowiada milionowi gigabajtów (GB). Analiza tych danych stanowi podstawę do określenia trójwymiarowej struktury molekuł, badania niezwykle szybkich procesów za pomocą tak zwanych filmów molekularnych oraz badania nowych i ultraszybkich zjawisk w badaniach materiałowych.
      Robert Feidenhans’l, dyrektor zarządzający European XFEL, powiedział: Współpraca z NCBJ w dziedzinie analizy danych jest przełomowym krokiem w kierunku coraz ściślejszego powiązania badań w Europie. Dodatkowe zasoby obliczeniowe nie tylko zwiększą wydajność, ale również zapewnią większą elastyczność operacyjną, co jest bardzo mile widziane. Musimy zwiększyć wymaganą wydajność obliczeniową dla naszych eksperymentów i cieszymy się, że wspólnie z naszymi partnerami NCBJ i DESY znaleźliśmy znakomite rozwiązanie.
      European XFEL to europejski laser na swobodnych elektronach zbudowany międzynarodowym wysiłkiem w Hamburgu w Niemczech. Narodowe Centrum Badań Jądrowych jest polskim współudziałowcem tej inwestycji. XFEL rozpoczął badania we wrześniu 2017 r. W liczącym ponad 3 km długości tunelu elektrony najpierw rozpędzane są do prędkości bliskiej prędkości światła, a następnie przepuszczane są przez specjalnie ukształtowane pole magnetyczne, co zmusza je do emisji promieniowania elektromagnetycznego o bardzo dobrze kontrolowanych parametrach. Wytworzone w ten sposób wiązki rentgenowskie docierające do hali eksperymentalnej w ultrakrótkich impulsach mogą być wykorzystywane przez fizyków, chemików, biologów i inżynierów do badania materii i procesów w niej zachodzących.
      PolFEL to polski laser na swobodnych elektronach budowany w NCBJ w Świerku na bazie doświadczeń zdobytych przy budowie lasera XFEL w Hamburgu. PolFEL będzie jedynym tego typu urządzeniem w Europie północno-wschodniej. Ze względu na swoją konstrukcję, w tym nadprzewodzące źródło elektronów opracowane przez naukowców ze Świerka, laser będzie oferował możliwości wykonywania badań dotąd niedostępnych na żadnym urządzeniu na świecie.
      Narodowe Centrum Badań Jądrowych jest instytutem działającym na podstawie przepisów ustawy o instytutach badawczych. Ministrem nadzorującym instytut jest minister energii. NCBJ jest największym instytutem badawczym w Polsce zatrudniającym ponad 1100 pracowników, w tym ponad 200 osób ze stopniem naukowym doktora, z czego ponad 60 osób ma status samodzielnych pracowników naukowych. W NCBJ pracuje ponad 200 osób z tytułem zawodowym inżyniera. Główna siedziba instytutu znajduje się w Otwocku w dzielnicy Świerk, gdzie zlokalizowany jest ośrodek jądrowy należący do NCBJ, w tym reaktor badawczy Maria. Instytut prowadzi badania naukowe i prace rozwojowe oraz wdrożeniowe w obszarze powiązanym z szeroko rozumianą fizyką subatomową, fizyką promieniowania, fizyką i technologiami jądrowymi oraz plazmowymi, fizyką materiałową, urządzeniami do akceleracji cząstek oraz detektorami, zastosowaniem tych urządzeń w medycynie i gospodarce oraz badaniami i produkcją radiofarmaceutyków. Instytut posiada najwyższą kategorię A+ przyznaną w wyniku oceny polskich jednostek naukowych dokonanej w 2017 r. Pozycję naukową instytutu wyznacza także liczba publikacji (ok. 500 rocznie) i liczba cytowań mierzona indeksem Hirscha (ponad 140). Są to wartości lokujące NCBJ w pierwszej piątce wśród wszystkich jednostek badawczych i akademickich w Polsce prowadzących porównywalne badania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W ubiegłą środę (12 czerwca) w Wiedniu ogłoszono listę eksperymentów, które w ramach współpracy Chin i ONZ znajdą się na pokładzie chińskiej stacji kosmicznej. Wśród dziewięciu przyjętych do realizacji projektów znalazł się eksperyment POLAR-2: Gamma-Ray Burst Polarimetry on the China Space Station. Projekt przygotowało konsorcjum z udziałem Narodowego Centrum Badań Jądrowych (NCBJ).
      Od ponad 50 lat naukowcy poprzez detektory umieszczone na satelitach, obserwują na niebie silne rozbłyski promieniowania gamma. Ich pochodzenie przez lata było tajemnicą, dziś wiąże się je z dwoma najbardziej energetycznymi typami eksplozji we Wszechświecie – zderzeniami gwiazd neutronowych bądź też gwiazdy neutronowej z czarną dziurą oraz z wybuchami hipernowych, kończącymi życie najmasywniejszych gwiazd. Wiemy, że podczas tych zjawisk uwalniana jest ogromna energia, jednak nadal nie całkiem rozumiemy, jakie procesy prowadzą do emisji najbardziej energetycznej części powstającego w ich trakcie promieniowania – wyjaśnia prof. Agnieszka Pollo, kierownik Zakładu Astrofizyki NCBJ. Sądzimy, że dużą rolę odgrywa pole magnetyczne układu będącego źródłem rozbłysku. Aby zbadać tę hipotezę, należy zebrać jak najwięcej informacji na temat polaryzacji docierającego do nas podczas rozbłysku promieniowania gamma. Kosmiczne promienie gamma są absorbowane przez atmosferę i nie docierają do powierzchni Ziemi, dlatego obserwacje rozbłysków gamma i ich polaryzacji trzeba prowadzić na przykład na stacji kosmicznej. Pierwsza współorganizowana przez nas misja POLAR, zrealizowana w 2016 r. na pokładzie chińskiego laboratorium kosmicznego Tiangong-2, zaobserwowała 55 rozbłysków, z których pięciu udało się zmierzyć polaryzację – uzupełnia prof. Pollo. Liczymy na to, że POLAR-2 dostarczy znacznie więcej znacznie bardziej szczegółowych informacji.
      Naukowcy i inżynierowie z Narodowego Centrum Badań Jądrowych uczestniczyli w pierwszym eksperymencie POLAR m.in. przygotowując elektronikę, prototypując plastikowe detektory scyntylacyjne i analizując zebrane dane. Dla eksperymentu POLAR-2 chcemy zaprojektować i zbudować układy elektroniczne odbierające dane bezpośrednio z detektora – opowiada mgr inż. Dominik Rybka z Zakładu Elektroniki i Systemów detekcyjnych NCBJ, współtwórca elektroniki wykorzystanej w 2016 r. Nasze układy wyposażymy w odpowiednie, stworzone u nas oprogramowanie. Zamierzamy także zaprojektować, zbudować i oprogramować elektronikę, która przygotuje do wysłania na ziemię sygnały odebrane wcześniej z detektorów. Kolejnym naszym zadaniem ma być budowa specjalnego zasilacza niskiego napięcia, zasilającego cały instrument.
      Polscy naukowcy będą również brać udział w analizie danych zebranych przez detektor.
      Poza NCBJ w skład konsorcjum POLAR-2 wchodzą: Uniwersytet Genewski, Max Planck Institute For Extraterrestial Physics oraz Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk.
      Naukowcy spodziewają się, że nowa aparatura zacznie zbierać dane w 2024 roku.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...