Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Planeta z żelaznym deszczem może być dziwniejsza niż się wydawało

Recommended Posts

WASP-76b, planeta opisywana jako supergorący Jowisz, może być jeszcze dziwniejsza niż się wydawało. Nie dość, że pada tam żelazny deszcz, to naukowcy z USA, Kanady i Irlandii Północnej odkryli w jej atmosferze duże ilości zjonizowanego wapnia. A to dopiero pierwsze wyniki przewidzianego na wiele lat projektu badawczego Exoplanets with Gemini Spectroscopy (ExoGemS).

Gorące Jowisze to gazowe olbrzymy, które krążą tak blisko swoich gwiazd macierzystych, że panują na nich temperatury podobne do temperatury gwiazdy. Odkryta w 2016 roku planeta WASP-76b znajduje się w odlełości około 640 lat świetlnych od Ziemi. Okrąża ona gwiazdę typu F, nieco cieplejszą od Słońca. A pełny obieg wokół gwiazdy trwa zaledwie 43 godziny. To pokazuje, jak blisko gwiazdy musi znajdować się planeta. Nic więc dziwnego, że jest na niej tak gorąco, iż dochodzi do odparowania żelaza, które następnie się skrapla i spada w postaci deszczu.

Uczeni z Cornell University, University of Toronto oraz Queen's University Belfast, prowadzą projekt badania takich właśnie egzotycznych światów. Dzięki badaniom egzoplanet o różnych masach i temperaturach chcemy stworzyć bardziej całościowy obraz zróżnicowania tych światów. Od planet, na których z nieba spadają żelazne deszcze, poprzez światy o umiarkowanym klimacie i od planet o masie znacznie większej od Jowisza po takie, które wielkością przypominają Ziemię, mówi profesor Ray Jayawardhana. Dzięki współczesnym teleskopom i instrumentom już teraz możemy dowiedzieć się wiele o ich atmosferach, zbadać ich skład, właściwości fizyczne, stwierdzić obecność chmur czy rozpoznać wielkoskalowe wzorce wiatrów, dodaje.

Podczas obserwacji WASP-76b uczeni zauważyli trzy rzadko odnotowywane linie spektralne. Zauważyliśmy bardzo dużo wapnia. To naprawdę silny sygnał. Linie spektralne zjonizowanego wapnia mogą wskazywać, że w górnych warstwach atmosfery tej planety wieją bardzo silne wiatry, albo że temperatura na planecie jest znacznie wyższa niż sądziliśmy, wyjaśnia główna autorka badań, doktorantka Emily Deibert.

Planeta obraca się synchronicznie do swojej gwiazdy, a zatem okres jej obrotu wokół własnej osi jest równy okresowi jej obiegu wokół gwiazdy. To oznacza, ni mniej ni więcej, że jedna jej połowa jest stale zwrócona w stronę gwiazdy. Na stronie nocnej, na którą światło gwiazdy nigdy nie pada, panuje temperatura około 1300 stopnie Celsjusza. Po stronie dziennej jest o około 1000 stopni cieplej. Deibert i jej zespół badali obszar umiarkowany, ten znajdujący się pomiędzy stroną dzienną a nocną.

W ramach projektu ExoGemS – na którego czele stoi Jake Turner w Wydziału Astronomii Cornell University – naukowy chcą szczegółowo zbadać co najmniej 30 egzoplanet.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze, badając populacje gwiazd poza Drogą Mleczną, dokonali odkrycia, które może zmienić nasze rozumienie wielu procesów astronomicznych, w tym tworzenia się czarnych dziur, powstawania supernowych oraz tego, dlaczego galaktyki umierają.
      Od lat 50. ubiegłego wieku przyjmuje się, że populacje gwiazd w innych galaktykach są podobne do tej, którą obserwujemy w Drodze Mlecznej – składają się one z gwiazd o dużej, średniej i małej masie. Duńscy naukowcy, na podstawie obserwacji 140 000 galaktyk do których analizy wykorzystano liczne zaawansowane modele, doszli do wniosku, że rozkład mas gwiazd w innych galaktykach wcale nie jest podobny do tego, co obserwujemy w najbliższym sąsiedztwie. Okazało się, że w odległych galaktykach gwiazdy mają zwykle większą masę niż w Drodze Mlecznej i u jej sąsiadów.
      Masa gwiazd wiele nam mówi. Jeśli zmienimy masę gwiazd, zmieni się też liczba supernowych oraz czarnych dziur powstających z masywnych gwiazd. Zatem uzyskane przez nas wyniki oznaczają, że musimy jeszcze raz rozważyć wiele naszych założeń, gdyż odległe galaktyki wyglądają inaczej niż nasza, mówi główny autor badań, Alber Sneppen z Instytutu Nielsa Bohra.
      Założenie, że rozkład wielkości i mas gwiazd z w odległych galaktykach jest taki sam jak w naszej, przyjęto przed około 70 laty dlatego, że nie wyliśmy w stanie wystarczająco szczegółowo galaktyk tych badać. Widzieliśmy jedynie wierzchołek góry lodowej i od dawna podejrzewaliśmy, że założenie, iż inne galaktyki wyglądają jak nasza, nie jest zbyt dobrym założeniem. Nikt jednak nie próbował dowieść, że w innych galaktykach populacje gwiazd wyglądają inaczej. Nasze badania pozwoliły nam to wykazać, a to otwiera drogę do lepszego zrozumienia tworzenia się galaktyk i ich ewolucji, wyjaśnia profesor Charles Steinhardt.
      Naukowcy wykorzystali katalog COSMO, wielką międzynarodową bazę danych zawierającą ponad milion obserwacji światła z galaktyk, od takich znajdujących się w naszym najbliższym sąsiedztwie, po obiekty odległe o 12 miliardów lat świetlnych. Autorzy analizy twierdzą na przykład, że odkryli, dlaczego w pewnym momencie galaktyki przestają tworzyć nowe gwiazdy. Teraz, gdy lepiej określiliśmy masy gwiazd, widzimy nowy wzorzec. Najmniej masywne galaktyki tworzą gwiazdy, a bardziej masywne ich nie tworzą. To wskazuje, że istnieje uniwersalny trend opisujący śmierć galaktyk, mówi Sneppen.
      Z badań wynika również, że większość galaktyk posiada bardziej masywne populacje gwiazd, niż sądzono. Ze szczegółami pracy można zapoznać się na łamach The Astrophysical Journal.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Szanghajskie Obserwatorium Astronomiczne zaproponowało umieszczenie w przestrzeni kosmicznej teleskopu, którego zadaniem byłoby poszukiwanie egzoplanet. Jeśli propozycja zostanie zaakceptowana – a decyzja ma zapaść latem bieżącego roku – Chiny rozpoczną budowę swojego pierwszego teleskopu kosmicznego wykrywającego egzoplanety.
      Zgodnie z propozycją Earth 2.0 Telescope miałby zostać umieszczony w punkcie libracyjnym L2 – tym samym w którym znajduje się Teleskop Webba – gdzie miałby spędzić cztery lata. Uczeni z Szanghaju chcą, by Earth 2.0 obserwował część kosmosu w kierunku centrum Drogi Mlecznej poszukując tam tranzytu planet na tle ich gwiazd macierzystych. Głównym celem zainteresowania teleskopu miałyby być egzoplanety wielkości Ziemi, krążące wokół gwiazd podobnych do Słońca po orbicie podobnej do orbity Ziemi. To oznacza, że teleskop musi być bardzo czuły oraz zdolny do długotrwałej obserwacji tych samych gwiazd, by odnotować tranzyty mające miejsce raz na kilkanaście miesięcy.
      Ge Jian, profesor z Szanghaju mówi, że Earth 2.0 nie byłby w stanie samodzielnie rozpoznawać planet bliźniaczych Ziemi. Zadaniem urządzenia byłoby odnalezienie planety, określenie jej wielkości i czasu obiegu wokół gwiazdy. Dane te byłyby następnie wykorzystywane podczas kolejnych obserwacji za pomocą innych urządzeń. I dopiero te obserwacje powiedziałyby nam, czy Earth 2.0 Telescope znalazł planetę podobną do naszej, która znajduje się w ekosferze swojej gwiazdy. Tacy kandydaci na planety byliby obserwowani za pomocą teleskopów naziemnych, dzięki którym określilibyśmy ich masę oraz gęstość. Następnie niektóre z nich można by dalej śledzić za pomocą naziemnych i kosmicznych spektroskopów w celu określenia widma światła pochodzącego z planety, co pozwoli na zbadanie składu ich atmosfery, mówi uczony.
      Chiński teleskop skupiłby się na tym samym obszarze, który badał słynny Teleskop Keplera. jednak miałby znacznie większe pole widzenia, zatem mógłby obserwować większy obszar i więcej gwiazd.
      Pole widzenia Keplera wynosi 115 stopni kwadratowych. Teleskop obserwował ponad pół miliona gwiazd, odkrył około 2600 egzoplanet, a drugie tyle czeka na potwierdzenie. Earth 2.0. Telescope miałby mieć 500-stopniowe pole widzenia. Warto nadmienić, że cały nieboskłon to około 41 000 stopni kwadratowych. Chiński teleskop byłby zdolny do monitorowania 1,2 miliona gwiazd. Mógłby też obserwować bardziej odległych i mniej jasnych gwiazd niż Teleskop Keplera.
      Profesor Ge mówi, że z obliczeń jego zespołu wynika, iż taki teleskop mógłby odkryć około 30 000 nowych planet, z czego około 5000 byłoby podobnych do Ziemi.
      Zgodnie z projektem Earth 2.0 Telescope składałby się z 6 teleskopów poszukujących planet podobnych do Ziemi i 1 szukającego zimnych lub swobodnych planet wielkości Marsa.
      Decyzja odnośnie ewentualnego sfinansowania projektu ma zapaść w czerwcu. Jeśli zostanie wydana zgoda na przeprowadzenie misji, Earth 2.0 Telescope mógłby zostać wystrzelony już w 2026 roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teleskop Kosmiczny Hubble'a pobił wyjątkowy rekord – zaobserwował najdalej od Ziemi położoną indywidualną gwiazdę. Dotychczasowy rekord również należał do Teleskopu Hubble'a i został pobity w 2018 roku, kiedy to zaobserwowano MACS J1149+2223 Lensed Star 1 położoną w odległości 9 miliardów lat świetlnych od Ziemi. Rekord ten właśnie pobito i to od razu o miliardy lat świetlnych.
      Nowo zaobserwowana gwiazda znajduje się w odległości 12,9 miliarda lat świetlnych od naszej planety. Współczynnik przesunięcia ku czerwieni (redshift) dla tej odległości wynosi 6,2. Niemal nie mogliśmy w to uwierzyć, bo gwiazda znajduje się znacznie dalej, niż poprzedni rekord, mówi Brian Welch z Uniwersytetu Johnsa Hhopkinsa, główy autor artykułu opisującego osiągnięcie.
      Odkrycia dokonano w danych zebranych w ramach projektu Hubble's RELICS (Reionization Lensing Cluster Survey). Normalnie przy tych odległościach całe galaktyki wyglądają jak niewielkie smugi, w których światło milionów gwiazd zlewa się w jedno. Światło z galaktyki, w której znajduje się ta gwiazda zostało powiększone i rozproszone przez zjawisko soczewkowania grawitacyjnego w długi sierp, który nazwaliśmy Łukiem Wchodzącego Słońca, mówi Welch.
      Podczas szczegółowego badania galaktyki naukowcy zauważyli, że jedno z obserwowanych zjawisk jest powodowane przez ekstremalnie powiększoną w soczewkowaniu grawitacyjnym gwiazdę. Została ona nazwana Earendel, co w języku staroangielskim oznacza gwiazdę poranną. Odkrycie daje nadzieję na otwarcie całkiem nowego pola badań nad formowaniem się wczesnych gwiazd.
      Earendel powstała tak dawno, że może nie zawierać tych samych pierwiastków, co młodsze gwiazdy. Dzięki możliwości zbadania Earendel zyskamy okazję to przyjrzenia się wszechświatowi, jakiego nie znamy, ale który doprowadził do tego, co istnieje obecnie. To tak, jakbyśmy dotychczas czytali bardzo interesującą książkę, ale zaczęli od drugiego rozdziału, a teraz mieli okazję przeczytać, jak to wszystko się zaczęło, ekscytuje się Welch.
      Badacze sądzą, że Earendel ma masę co najmniej 50 razy większą od masy Słońca i jest miliony razy jaśniejsza od naszej gwiazdy. Mimo tego, że jest tak olbrzymia i jasna, nie bylibyśmy w stanie jej dostrzec z odległości, w jakiej się znajduje. Widzimy ją dzięki olbrzymiej gromadzie galaktyk WHL0137-08, który znajduje się między gwiazdą a Ziemią. Masa gromady zagina przestrzeń, działając jak olbrzymie szkło powiększające, dzięki któremu możemy dostrzec światło emitowane przez obiekty znajdujące się poza WHL0137-08.
      Szczęśliwie złożyło się, że Earendel znajduje się w takiej pozycji, iż jest maksymalnie powiększana przez soczewkę grawitacyjną tworzoną przez gromadę galaktyk. Dzięki temu „wystaje” z blasku milionów gwiazd swojej galaktyki macierzystej, a jej jasność jest wzmacniana przez soczewkę co najmniej tysiąckrotnie. Obecnie niw wiemy, czy Earendel jest częścią układu podwójnego, ale warto pamiętać, że większość masywnych gwiazd ma co najmniej jednego towarzysza.
      Specjaliści uważają, że przez wiele kolejnych lat Earendel będzie znacząco powiększana w wyniku soczewkowania. Gwiazdę będzie obserwował Teleskop Kosmiczny Jamesa Webba (JWST), a dzięki temu, że pracuje on głównie w podczerwieni, pozwoli na zdobycie wielu cennych informacji na jej temat. Uczeni spodziewają się, że Webb potwierdzi, iż Earendel to gwiazda, pozwoli nam też zmierzyć jej jasność i temperaturę, to zaś pozwoli na określenie typu gwiazdy i etapu życia, na jakim się znajduje.
      Astronomów szczególnie interesuje skład Earendel, gdyż gwiazda powstała zanim jeszcze wszechświat został wypełniony ciężkimi pierwiastkami wytworzonymi przez kolejne generacje gwiazd. Jeśli okaże się, że Earendel składa się wyłącznie w pierwotnego wodoru i helu, będzie to pierwszy dowód na istnienie gwiazd III populacji. To hipotetyczna populacja pierwszych bardzo masywnych gwiazd, które praktycznie nie zawierały metali. Składały się wyłącznie z wodoru i helu, z możliwą niewielką zawartością litu.
      Odkrycie Earendel przez Hubble'a daje nadzieję, że Webb dojrzy jeszcze bardziej odległe gwiazdy.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie z MIT uzyskali najdokładniejszy obraz atmosfery nocnej strony egzoplanety znajdującej się w obrocie synchronicznym wokół swojej gwiazdy. Przeszliśmy z etapu badania izolowanych regionów atmosfery egzoplanet, to badania ich takimi jakimi naprawdę są – trójwymiarowymi systemami, mówi Thomas Mikal-Evans, lider grupy badawczej z Kavli Institute for Astrophysics and Space Research.
      Z obrotem synchronicznym mamy do czynienia na przykład w układzie Ziemia-Księżyc. Srebrny Glob, obracając się synchronicznie wokół naszej planety, jest wystawiony w jej kierunku zawsze tą samą stroną. W przypadku wspomnianej planety WASP-121b oznacza to, że po jednej jej stronie panuje wieczny dzień, a po drugiej – wieczna noc.
      WASP-121b to gorący Jowisz odkryty w 2015 roku. Krąży wokół gwiazdy znajdującej się około 850 lat świetlnych od Ziemi. Ma też jedną z najciaśniejszych orbit. Pełny obieg wokół gwiazdy zajmuje planecie około 30 godzin.
      Już wcześniej po dziennej stronie WASP-121b odkryto parę wodną, a naukowcy badali, jak wraz ze wzrostem wysokości zmienia się temperatura atmosfery. Teraz zaś udało się zbadać nocną stronę planety, zmapować zmiany temperatury pomiędzy stroną nocną a dzienną i pokazać, jak temperatury zmieniają się wraz ze wzrostem wysokości. Po raz pierwszy też zbadano przemieszczanie się pary wodnej pomiędzy obiema stronami egzoplanety obracającej się synchronicznie wokół gwiazdy.
      Ziemia, której siły pływowe gwiazdy nie zamknęły w obrocie synchronicznym, doświadcza dnia i nocy, a cykl obiegu wody polega w dużej mierze na parowaniu, kondensacji i tworzeniu chmur oraz opadach.
      Jednak na WASP-121b zachodzą niezwykle dramatyczne zjawiska. Na dziennej stronie, gdzie temperatury przekraczają 2700 stopni Celsjusza, molekuły wody są rozbijane na tworzące je atomy wodoru i tlenu. Wiatry wydmuchują te atomy na stronę nocną. Tam panują niższe temperatury i dochodzi do ponownego utworzenia molekuł wody. Te zaś ponownie wędrują na stronę dzienną i proces się powtarza. Ten gwałtowny cykl obiegu wody jest napędzany przez równie gwałtowne wiatry wiejące wokół planety z prędkością dochodzącą do 18 000 kilometrów na godzinę.
      Jednak wokół planety krąży nie tylko woda. Jej nocna strona jest na tyle chłodna, że powstają tam chmury z żelaza i korundu (Al2O3), minerału tworzącego rubiny czy szafiry. Chmury te mogą również być wypychane na dzienną stronę, gdzie dochodzi do odparowywania minerału. Gdzieś po drodze mogą spaść deszcze. Ale na WASP-121b nie pada woda. Z nieba mogą tam lecież kamienie szlachetne.
      Dzięki tym obserwacjom mamy obraz atmosfery całej planety, cieszy się Mikal-Evans. A obserwacji dokonano za pomocą spektroskopu znajdującego się na pokładzie Teleskopu Hubble'a. Analizuje on światło pochodzące z atmosfery, rozbija je na składowe długości fali i na tej podstawie dostarcza danych, dzięki którym astronomowie mogą określić temperaturę i skład atmosfery. Wielokrotnie w ten sposób obserwowano dzienną stronę różnych egzoplanet. Badanie strony nocnej jest znacznie trudniejsze. Wymaga bowiem śledzenia niewielkich zmian w spektrum światła z planety, do których dochodzi, gdy okrąża ona swoją gwiazdę. Naukowcom z MIT ta sztuka się udała.
      Byli w stanie określić profil temperatury całej atmosfery. Dowiedzieli się, że w najgłębszych warstwach atmosfery po stronie dziennej temperatura nieco przekracza 2200 stopni Celsjusza, a w warstwach najwyższych wynosi ona ponad 3200 stopni. Natomiast po stronie nocnej temperatura warstwy najniższej wynosi nieco ponad 1500 stopni Celsjusza, by w warstwie najwyższej spaść do około 1200 stopni. Model komputerowy użyty do zbadania gradientu temperatur na różnych wysokościach wykazał, że po stronie nocnej mogą istnieć chmury złożone m.in. z żelaza, korundu i tytanu.
      Najgorętsze miejsce planety znajduje się bezpośrednio pod jej gwiazdą, jednak region ten jest przesuwany przez silne wiatry na wschód, zanim ciepło zdąży uciec w przestrzeń kosmiczną. To właśnie z wielkości tego przesunięcia wyliczono prędkość wiatru. Wiejące tam wiatry są znacznie potężniejsze niż ziemski prąd strumieniowy. Prawdopodobnie może on przemieścić chmury wokół całej planety w czasie około 20 godzin, mówi współautor badań, Tansu Daylan.
      Naukowcy już zarezerwowali sobie czas obserwacyjny na Teleskopie Kosmicznym Jamesa Webba. Mają nadzieję, że za jego pomocą będą mogli obserwować nie tylko przemieszczanie się wody, ale i dwutlenku węgla w atmosferze. Ilość węgla i tlenu w atmosferze może znam zdradzić, gdzie dochodzi do formowania się tego typu planet, wyjaśnia Mikal-Evans.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie potwierdzili, że wokół Proximy Centauri, gwiazdy najbliższej Słońcu, krąży nieznana dotychczas planeta. To trzecia planeta Proximy Centauri. Z dotychczas zdobytych danych wynika, że jej masa to zaledwie 25% masy Ziemi, jest zatem jedną z najlżejszych znanych nam egzoplanet.
      Odkrycie to pokazuje, że najbliższy nam sąsiad może zawierać sporo interesujących światów. Znajdują się w odległości, z której możemy je badać, a w przyszłości eksplorować, mówi główny autor badań, João Faria z Instituto de Astrofísica e Ciências do Espaço w Portugalii.
      Nowa planeta, Proxima d, znajduje się w odległości około 4 milionów kilometrów od swojej gwiazdy. To 10-krotnie bliżej niż odległość pomiędzy Merkurym a Słońcem i niemal 40-krotnie bliżej niż między Słońcem a Ziemią. Mimo tak niewielkiej odległości Proxima d krąży się w ekosferze swojej gwiazdy, czyli takiej odległości, która pozwala na istnienie wody w stanie ciekłym na jej powierzchni. Czas obiegu nowo odkrytej planety wokół Proximy Centauri wynosi zaledwie 5 dni.
      Już wcześniej znaliśmy dwie planety na orbitach wokół Proximy Centauri. Proxima b ma masę porównywalną z masą Ziemi, znajduje się w ekosferze i obiega gwiazdę w ciągu 11 dni. Druga z nich to wciąż niepotwierdzona Proxima c, superziemia lub gazowy olbrzym o okresie orbitalnym wynoszącym aż 5 lat. Znajduje się poza ekosferą.
      Proxima b została odkryta w 2016 roku, a odkrycie ostatecznie potwierdzono w roku 2020. Proximę d zauważono po raz pierwszy roku 2019, a teraz potwierdzono, że obserwowane spadki jasności gwiazdy nie są spowodowane jej zmiennością, a wynikają z obecności planety.
      Proxima d to najlżejsza egzoplaneta odnaleziona metodą analizy prędkości radialnej. Technika ta polega na badaniu chybotania gwiazdy pod wpływem oddziaływania planety. To niezwykle ważne osiągnięcie. Pokazuje bowiem, że technika analizy prędkości kątowej może pomóc w odkryciu nieznanej dotychczas populacji lekkich planet podobnych do Ziemi. Spodziewany się, że to najbardziej rozpowszechniona we wszechświecie klasa planet i potencjalnie może na nich istnieć życie podobne do ziemskiego, stwierdził Pedro Figueira z Europejskiego Obserwatorium Południowego w Chile.
      Mimo, że Proxima Centauri znajduje się w odległości „zaledwie” 4 lat świetlnych od Ziemi, to obecnie możemy ją jedynie obserwować. Jednak warto przypomnieć, że w 2017 roku niemieccy naukowcy zaproponowali trwającą 150 lat misję do Alfa Centauri i Proximy b, a kilka miesięcy później pojawiła się informacja, że o wysłaniu pojazdu do Proximy Centauri myśli też NASA. Przed dwoma laty zaś naukowcy obliczyli, kiedy wysłane w latach 70. sondy Pioneer i Voyager dotrą do gwiazd innych niż Słońce.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...