Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Dwóch naukowców z Japonii, Patryk Sofia Lykawka i Takashi Ito, zaprezentowali wyliczenia, które mogą wskazywać, że w Pasie Kuipera znajduje się planeta wielkości Ziemi. Dziewiąta Planeta, zwana też Planetą X, jest od wielu lat przedmiotem poszukiwań. Przynajmniej od czasu, gdy w 2016 roku dwóch profesorów z Caltechu (California Institute of Technology), zaprezentowali pracę, z której wynikało, że orbity 13 odległych obiektów z Pasa Kupiera ma nietypowe podobne orbity, a można je wyjaśnić obecnością planety.
Od czasu opublikowania pracy uczonych z Caltechu odkryto kolejne obiekty, których orbity pasowałyby do hipotezy o obecności nieznanej planety, rozpoczęto jej poszukiwania w średniowiecznych tekstach, pojawiła się też hipoteza, że w Układzie Słonecznym krąży pierwotna czarna dziura, a nie nieznana planeta.
Patryk Sofia Lykawka z Uniwersytetu Kindai oraz Takashi Ito z Narodowego Obserwatorium Astronomicznego Japonii i Uniwersytetu Technologii w Chiba opublikowali w The Astronomical Journal pracę, w której opisują właściwości obiektów z Pasa Kuipera, które wskazują na obecność planety.
Wykorzystaliśmy symulację komputerową problemu wielu ciał, by zbadać wpływ hipotetycznej planety w Pasie Kuipera na strukturę orbit obiektów transneptunowych znajdujących się w odległości większej niż 50 jednostek astronomicznych. Do stworzenia naszego modelu wykorzystaliśmy dane obserwacyjne, w tym dobrej jakości dane z Outer Solar System Origins Survey. Stwierdziliśmy, że obecność podobnej do Ziemi planety (o masie od 1,5 do 3 mas Ziemi), znajdującej się na odległej (półoś wielka ok. 250–500 j.a., peryhelium ok. 200 j.a.) orbicie o nachyleniu orbity wynoszącym ok. 30 stopni może wyjaśnić trzy podstawowe właściwości odległych obiektów z Pasa Kuipera: znaczącej populacji obiektów transneptunowych o orbitach poza wpływem grawitacyjnym Neptuna, znaczącą populację obiektów o wysokim nachyleniu orbity (> 45 stopni) oraz istnienie obiektów o wyjątkowo nietypowych orbitach (np. Sedna). Ponadto obecność proponowanej planety jest zgodna ze zidentyfikowanymi długoterminowo stabilnymi obiektami transneptunowymi, pozostającymi w rezonansie 2:1, 5:2, 3:1, 4:1, 5:1 i 6:1 z Neptunem. Ta populacja stabilnych obiektów jest często pomijana w innych badaniach, czytamy w artykule.
Pas Kuipera znajduje się za orbitą Neptuna, w odległości 30–50 jednostek astronomicznych od Ziemi. Zawiera on wiele małych obiektów. To właśnie w nim znajduje się Pluton. Mianem obiektów transneptunowych określa się okrążające Słońce planetoidy znajdujące się poza orbitą Neptuna.
« powrót do artykułu -
By KopalniaWiedzy.pl
Planeta 9, zwana też Planetą X, to hipotetyczna planeta Układu Słonecznego. Nie została jeszcze odkryta, nie wiadomo, czy w ogóle istnieje. Tymczasem Man Ho Chan, astronom z Uniwersytetu w Hongkongu, opublikował na łamach arXiv artykuł pod zaskakującym tytułem „A co jeśli planeta 9 ma satelity?”. Tekst został zaakceptowany do publikacji w Astronomical Journal.
Historia planety rozpoczęła się, gdy Chad Trujillo, były doktorant profesora Mike'a Browna z Caltechu, i Scott Sheppard opublikowali pracę, w której stwierdzili, że nietypowe orbity o podobnych cechach kilkunastu odległych obiektów z Pasa Kuipera, można wyjaśnić istnieniem nieznanej planety. Brown stwierdził, że to mało prawdopodobne, ale nawiązał współpracę z profesorem Konstantinem Batyginem, by to sprawdzić. Na początku 2016 roku ukazała się praca ich autorstwa, w której stwierdzali, że prawdopodobieństwo, iż wspomniane nietypowe orbity są dziełem przypadku jest tak małe, iż wszystko wskazuje na istnienie nieznanej planety w Układzie Słonecznym, której oddziaływanie doprowadziło to takiego ukształtowania orbit. Stwierdzili wówczas, że planeta taka miałaby masę 10-krotnie większa od masy Ziemi, znajdowałaby się średnio 20-krotnie dalej od Słońca niż Neptun, a czas jej obiegu wynosiłby od 10 do 20 tysięcy lat. W ciągu ostatnich lat kolejne zespoły naukowe wysuwały hipotezy mówiące zarówno, że obca planeta została „ukradziona” przez Słońce innej gwieździe, jak i że w Układzie Słonecznym krąży pierwotna czarna dziura. Dotychczas jednak żadna z hipotez nie została udowodniona.
Skoro zaś nie wiemy, czy planeta istnieje, tym bardziej dziwne wydaje się rozważanie na temat jej satelitów. Jednak ma to sens. Dzięki potencjalnym księżycom wykrycie Planety 9 będzie bowiem łatwiejsze. Chan argumentuje, że jeśli ma ona księżyce, to będą one posiadały zmienną sygnaturę cieplną, wywołaną przez siły pływowe planety. Ta sygnatura cieplna powinna być 2,5-krotnie silniejsza niż sygnatura cieplna samej planety oraz znacznie większa niż sygnatura jakiegokolwiek obiektu z Pasa Kupiera. Chan twierdzi, że do jej wykrycia powinien być zdolny Atacama Large Millimeter/submillimeter Array Observatory, który niedawno przeszedł rozbudowę. Uczony z Hongkongu zauważa, że jeśli Batygin i Brown nie mylą się co do szacunków masy Planety 9, to może mieć ona nawet 20 satelitów, co zwiększa szanse na wykrycie ich sygnatur cieplnych. Poza orbitą Neptuna nie istnieje żaden mechanizm, który mógłby zwiększać temperatury w zakresie opisanym przez Chana, wykrycie takiej sygnatury byłoby mocną wskazówką istnienia Planety 9.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie odkryli nowy system pierścieni w Układzie Słonecznym. Otaczają one planetę karłowatą Quaoar i znajdują się znacznie dalej od jej powierzchni niż typowe systemy pierścieni, co każe jeszcze raz zastanowić się nad teoriami dotyczącymi formowania się tego typu struktur.
Quaoar to duża planetoida, o połowę mniejsza od Plutona, która znajduje się za Neptunem. Została odkryta w 2002 roku. Naukowcy, wykorzystując niezwykle czułą szybką kamerę HiPERCAM zamontowaną na największym na świecie teleskopie optycznym Gran Telescopio Canarias na La Palmie zauważyli, że obiekt ten posiada pierścienie. Są one zbyt małe i ciemne, by było widać je bezpośrednio na zdjęciu. Zaobserwowano je dzięki okultacji, kiedy to światło znajdującej się w tle gwiazdy zostało kilkukrotnie na krótko przesłonięte przez niewidoczne na zdjęciu obiekty.
Dotychczas znaliśmy zaledwie sześć systemów pierścieni w Układzie Słonecznym. Takie struktury istnieją wokół Saturna, Jowisza, Urana, Neptuna oraz dwóch planet karłowatych – Chariklo i Haumei. Wszystkie te systemy znajdują się na tyle blisko swojego ciała macierzystego, że siły pływowe uniemożliwiają akrecję materiału z pierścienia i utworzenie księżyców.
Pierścienie wokół Quaoara są wyjątkowe. Znajdują się bowiem w odległości większej niż siedmiokrotna średnica planetoidy. To zaś dwukrotnie dalej niż tzw. granica Roche'a. Granica ta to – w układzie dwóch ciał o znacznej różnicy mas – promień, po przekroczeniu którego ciało mniej masywne może się rozpaść pod wpływem sił pływowych ciała bardziej masywnego. Na przykład główne pierścienie Saturna znajdują się w odległości 3 promieni planety od jej powierzchni. W przypadku Quaoar mamy odległość 7-krotnie większą niż promień planetoidy, a mimo to pierścienie istnieją i nie dochodzi do akrecji materiału. To wskazuje na konieczność przemyślenia teorii dotyczącej formowania się pierścieni.
Odkrycie nieznanego systemu pierścieni było czymś niespodziewanym. A jeszcze bardziej niespodziewane było znalezienie pierścieni tak daleko od Quaoar, co rzuca wyzwanie naszemu dotychczasowemu rozumieniu formowania się pierścieni, mówi profesor Vik Dhillon z University of Sheffield.
« powrót do artykułu -
By KopalniaWiedzy.pl
Niedawne badania podważyły przekonanie, jakoby ziemskie kontynenty uformowały się wyłącznie w wyniku procesów zachodzących wewnątrz naszej planety. Teraz dowiadujemy się o odkryciu „rytmu produkcji” skorupy ziemskiej. Badania minerałów ujawniły, że co mniej więcej 200 milionów lat dochodzi do wzmożenia zmian zachodzących w skorupie ziemskiej, a okres ten jest zbieżny z przejściem Układu Słonecznego przez ramiona Drogi Mlecznej.
Przed kilkoma tygodniami informowaliśmy, że zdaniem naukowców z australijskiego Curtin University ziemskie kontynentu uformowały się w wyniku gigantycznych uderzeń meteorytów. Teraz dowiadujemy się, że do zwiększonego bombardowania dochodzi co około 200 milionów lat. "Układ Słoneczny przemieszcza się pomiędzy spiralnymi ramionami Drogi Mlecznej co około 200 milionów lat. Badając wiek i sygnatury izotopowe minerałów z Kratonu Pilbara w Zachodniej Australii i Kratonu Północnoatlantyckiego na Grenlandii zauważyliśmy podobny rytm tworzenia się skorupy ziemskiej, który zbiega się z okresem, w jakim Układ Słoneczny przechodzi przez obszary o największym zagęszczeniu gwiazd", mówi profesor Chris Kirkland z Curtin University.
Układ Słoneczny krąży wokół centrum Drogi Mlecznej. Okres obiegu wynosi około 230 milionów lat i nazywany jest rokiem galaktycznym. Łatwo więc wyliczyć, że gdy ostatni raz Słońce znajdowało się w tym samym miejscu galaktyki co obecnie, po Ziemi chodziły pierwsze dinozaury.
Raz na jakiś czas – mniej więcej do 200 milionów lat – Układ Słoneczny trafia na bardziej gęste obszary galaktyki. Wtedy oddziaływanie grawitacyjne znajdujących się w pobliżu gwiazd może destabilizować Obłok Oorta i kierować znajdujące się tam planetoidy w stronę Słońca. A część z nich trafi w Ziemię.
Obłok Oorta to hipotetyczna – bo jej istnienia wciąż nie udowodniono – pozostałość po formowaniu się Układu Słonecznego. Ma on składać się m.in. z pyłu i planetoid. Astronomowie sądzą, że wewnętrzne krawędzie Obłoku znajdują się w odległości od 2 do 5 tysięcy jednostek astronomicznych od Słońca, a krawędzie zewnętrzne położone są w odległości od 10 do 100 tysięcy j.a. Przypomnijmy, że 1 j.a. to średnia odległość pomiędzy Słońcem a Ziemią, a najdalej wysłany przez człowieka pojazd, sonda Voyager 1, znajduje się w odległości zaledwie 157,5 j.a. od Ziemi.
Zwiększenie częstotliwości uderzeń komet w Ziemię mogło prowadzić do spotęgowania procesów topnienia powierzchni planety i zapoczątkować formowanie się kontynentów, mówi Kirkland. Powiązanie tworzenia się kontynentów, na których obecnie żyjemy, z podróżą Układu Słonecznego przez Drogę Mleczną rzuca całkowicie nowe światło na historię tworzenia się planety i jej miejsce w przestrzeni kosmicznej, dodaje.
« powrót do artykułu -
By KopalniaWiedzy.pl
Dziewiąta Planeta, zwana też Planetą X, to wciąż hipotetyczny nieznany członek Układu Słonecznego. Jej istnienie zaproponowano przed kilku laty, by wyjaśnić nietypowe orbity niektórych obiektów poza Neptunem. Dziewiątej wciąż nie znaleziono, ale właśnie dowiadujemy się o odkryciu planety, która może być podobna do naszej Dziewiątej.
Niezwykłą planetę zauważono w 2013 roku w dużej odległości od liczącej sobie zaledwie 15 milionów lat gwiazdy podwójnej HD 106906. Jest jedyną znaną nam planetą w tak olbrzymiej odległości od gwiazdy. Planeta ta jest znacznie bardziej masywna, niż proponowana masa Dziewiątej. O ile bowiem Planeta X może mieć masę 10-krotnie większą od Ziemi, to planeta z 2013 roku jest 11-krotnie bardziej masywna od Jowisza, czyli ma 3500 mas Ziemi.
Znaleziono ją znacznie powyżej płaszczyzny układu planetarnego, odchyloną od niego o 21 stopni. Jednak dotychczas nie wiedziano, czy planeta ta stanowi część tego układu i jest powiązana grawitacyjnie jego gwiazdą podwójną czy też jest właśnie z niego wyrzucana.
Teraz na łamach Astronomical Journal opublikowano artykuł z którego dowiadujemy się, że HD 106906 b krąży wokół układu podwójnego HD 106906. Na podstawie analizy pozycji tej planety na przestrzeni ponad 14 lat naukowcy stwierdzili, że planeta okrąża swoje gwiazdy w ciągu 15 000 lat, wędrując po mocno eliptycznej orbicie.
Zauważenie planety na tak niezwykłej orbicie to potwierdzenie, że planety mogą mieć niezwykle wydłużone i nietypowo nachylone orbity. A to oznacza, że nic nie stoi na przeszkodzie, by taką orbitę miała też Dziewiąta Planeta. O ile istnieje.
HD 106906 zyskała swoją niezwykłą orbitę na wczesnym etapie ewolucji układu planetarnego. Bardzo wcześnie dzieje się coś, co wyrzuca planety i komety na zewnątrz, a później pojawiają się przechodzące obok gwiazdy, które stabilizują całość, mówi jeden z autorów badań, Paul Kalas z Uniwersytetu Kalifornijskiego w Berkeley. Powoli gromadzimy dowody potrzebne nam do zrozumienia dużego zróżnicowania planet pozasłonecznych oraz tego, jak się to ma do niewyjaśnionych jeszcze zagadek Układu Słonecznego.
HD 106906 to młody układ podwójny znajdujący się w kierunku Gwiazdozbioru Krzyża Południa. W ostatnich latach był on intensywnie badany, gdyż posiada duży dysk pyłu i gazu, w którym mogą się rodzić planety. Na zdjęciu wykonanym w 2013 roku przez Teleskop Magellana w Chile zauważono planetę, świecącą od własnego wewnętrznego ciepła i znajdującą się w odległości 737 jednostek astronomicznych od układu podwójnego. To 25-krotnie dalej niż odległość Neptuna od Słońca.
Badania z 2015 roku wykazały, że w przeszłości planeta znajdowała się bliżej układu podwójnego, ale została wyrzucona w wyniku interakcji z gwiazdami. Problem w tym, że planeta mogła zostać całkowicie wyrzucona ze swojego układu. Do ustabilizowania jej dodatkowej orbity potrzebna była jeszcze dodatkowa interakcja.
Kalas i Robert De Rosa, który obecnie pracuje w Europejskim Obserwatorium Południowym, zaczęli szukać obiektów, z którymi mogło dojść do takiej interakcji i poinformowali, że zidentyfikowali kilkanaście gwiazd, które 3 miliony lat wcześniej mogły przechodzić w pobliżu układu HD 106906 stabilizując orbitę wyrzuconej planety HD 106906 b.
Teraz, korzystając z danych z lat 2004–2018 Kalas, de Rosa i Meiji Nguyen donoszą, że planeta jest na stabilnej orbicie wokół układu podwójnego, a w badanym czasie przebyła mniej niż 1/1000 swojej orbity. Co więcej, potwierdzili, że orbita ta jest bardzo mocno – w zakresie od 36 do 44 stopni – odchylona od płaszczyzny układu. A jej peryhelium znajduje się odległości 500 jednostek astronomicznych. To zaś sugeruje, że nie ma ona żadnego wpływu na zewnętrzne planety układu. Jest to więc jej kolejne podobieństwo do Dziewiątej, która nie wpływa na pozostałych osiem planet krążących wokół Słońca.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.