Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Topniejące lądolody wywołują ruchy skorupy ziemskiej na większą skalę niż przypuszczano

Recommended Posts

Topniejące lądolody na biegunach wywołują zmiany mierzalne w skali globalnej, których rozmiary zaskoczył naukowców. I nie chodzi tutaj o podnoszący się poziom oceanów, a o ruchy samej skorupy ziemskiej uwolnionej od ciężarów miliardów ton lodu. Doktor Sophie Coulson i jej zespół opisują na łamach Geophysical Research Letters, jak skorupa ziemska pod Grenlandią i Antarktydą zmienia swój kształt, a zmiany te mają wpływ na obszary położone tysiące kilometrów dalej.

Naukowcy prowadzili wiele badań bezpośrednio pod lodowcami czy lądolodami. Wiedzą więc, że te masy lodu definiują region, w którym się znajdują. Nie mieli jednak pojęcia, że mają one wpływ na skalę globalną, mówi Coulson, która pracuje na Uniwersytecie Harvarda.

Świeżo upieczona doktorantka analizowała zdjęcia satelitarne dotyczące topnienia lądolodów z lat 2003–2018. Uczeni byli w stanie zmierzyć poziomie przemieszczanie się skorupy ziemskiej spowodowane uwolnieniem jej od nacisku lodu. Wtedy też ze zdumieniem zauważyli, że w niektórych miejscach skorupa przesunęła się bardziej w poziomie niż w pionie. Dodatkowym zaskoczeniem był zasięg tych zmian. Można je było bowiem zauważyć na olbrzymiej przestrzeni. A to, jak stwierdzają uczeni, może dostarczyć nam nowych narzędzi do monitorowania zmian czap lodowych.

Wyobraźmy sobie drewnianą belkę w wodzie. Jeśli naciśniemy na belkę i przesuniemy ją w dół, woda pod nią również przemieści się w dół. Jeśli podniesiemy belkę, woda pod nią również się podniesie i wypełni pustą przestrzeń, stwierdza Coulson. W niektórych częściach Antarktyki unosząca się skorupa ziemska prowadzi do zmian kąta nachylenia skał leżących pod lodem, co zmienia dynamikę lodu, dodaje.

Współczesne topnienie lądolodów tylko ostatni z epizodów tego typu zmian. Arktyka jest szczególnie interesująca, bo mamy tutaj nie tylko współczesną pokrywę lodową, ale również dane z ostatniej epoki lodowej. Skorupa ziemska wciąż unosi się od jej zakończenia, mówi Coulson. Jeśli chodzi o krótką, współczesną skalę, to myślimy o Ziemi jak o gumowej piłce. Natomiast w skali tysiącleci ziemia zachowuje się bardziej jak wolno przemieszczająca się ciecz. Procesy z epoki lodowej wywierały na nią wpływ przez tysiące lat i wciąż możemy obserwowac skutki ich działań.

Lepsze zrozumienie wszystkich czynników wpływających na ruchy skorupy ziemskiej jest bardzo ważne z punktu widzenia nauk o Ziemi. Na przykład, żeby dokładnie obserwować ruchy tektoniczne i monitorować trzęsienia ziemi, musimy być w stanie odróżnić te zjawiska od ruchu powodowanego obecną utratą lodu, wyjaśnia uczona.

Przeprowadzone przez Sophie badania są pierwszymi, które wykazały, że zarówno wielkość jak i rozległość ruchu skorupy ziemskiej spowodowanego utratą masy przez lodowce i lądolody, jest większa niż przypuszczano, zaznacza profesor Glenn Antony Milne z University of Ottawa. I dodaje, że ma to np. znaczenie dla danych satelitarnych dotyczących rozkładu masy na naszej planecie.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Tak topnieją, że aż nie topnieją

"At 4.81 million square kilometres, the Arctic sea-ice minimum in 2021 was a roughly 1.5 million square kilometres above the previous negative record in 2012, when the satellites recorded a residual area of 3.27 million square kilometres. "

https://www2.idw-online.de/en/news775842

Wyniki badań i i ch tłumaczenie zależą od grubości koperto. Nawet jak w liczbach nie wychodzi mniej, to i tak topnieją

Share this post


Link to post
Share on other sites

Kilka sekund szukania w google i po wyimaginowanym spisku naukowców nie pozostał nawet ślad, tak jak nie ma śladu po zeszłorocznym śniegu. Czasami mam wrażenie, że się znęcam w internecie nad ludźmi. Też tak macie? :)

osisaf_nh_iceextent_monthly-08.gif

 

Jeszcze znalazłem inne badanie z mapką oraz prognozami na przyszłość:

Arctic-Sea-Ice-Minimum-Extent-Observatio

Źródło:
https://www.researchgate.net/figure/Arctic-Sea-Ice-Minimum-Extent-Observations-1970-2007-and-Forecasts-2030-2100-Authors-own_fig1_309282763

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
21 minut temu, cyjanobakteria napisał:

Kilka sekund szukania w google i po wyimaginowanym spisku naukowców nie pozostał nawet ślad,

Hola, hola, nie rozpędzaj się tak. Ja tu widzę, że parabola będzie lepiej pasowała. A poza tym, to przypadek że powierzchnia lodu jest ujemnie skorelowana z numerem roku. Jakoś nie widzę związku. Dlaczego numer roku miałby mieć wpływ na pokrywę lodową? Poza tym, wystarczy zmienić kalendarz na jakiś odliczający w dół i korelacja będzie dodatnia. Szach mat.

;)

 

Edited by Jajcenty
  • Haha 1

Share this post


Link to post
Share on other sites

Z roku na rok coraz to więcej tłustych kotów grzeje dupska na biegunie na ciepłych posadkach z grantów, popija tequile i wymyśla dyrdymały za pieniądze podatnika, to i nie dziwota, że się lód topi :) Po za tym piratów nadal ubywa z roku na rok, mimo chwilowego odbicia w Somalii, co też nie jest bez znaczenia :) 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
W dniu 27.09.2021 o 17:58, KopalniaWiedzy.pl napisał:

Wtedy też ze zdumieniem zauważyli, że w niektórych miejscach skorupa przesunęła się bardziej w poziomie niż w pionie

A jakieś wielkości liczbowe? Bo oczekiwane wartości to <ubytek lodu>*<iloraz gęstości>.

Share this post


Link to post
Share on other sites

Troll dał swój standardowy popis. Ja przedstawiłem liczby zaprezentowane z pomiarów przez instytut w Niemczech, a ten fantazje na temat pokrywy lodowej w 2030, plus standardowe trollowe gadki.

Share this post


Link to post
Share on other sites
29 minutes ago, Kikkhull said:

Troll dał swój standardowy popis. Ja przedstawiłem liczby zaprezentowane z pomiarów przez instytut w Niemczech, a ten fantazje na temat pokrywy lodowej w 2030, plus standardowe trollowe gadki.

Pierwszy wykres jest nad wyraz czytelny chyba, że nie przerobiliście jeszcze cyfr arabskich. W końcu rok szkolny dopiero co się zaczął, a zeszły to była degrengolada. To że jesteś ociężały umysłowo to widać na pierwszy rzut oka, ale chyba tez musisz dobrać sobie mocniejsze szkiełka. Dane na mapie pochodzą z obserwacji do 2007, a reszta to są prognozy. Wymaga to jednak czytania ze zrozumieniem, więc to wyższa szkoła jazdy :)

Share this post


Link to post
Share on other sites
34 minuty temu, Kikkhull napisał:

Ja przedstawiłem liczby zaprezentowane z pomiarów przez instytut w Niemczech,

e tam, pierwsze zdanie publikacji, którą tak szermujesz to: Negative trend continues - Comparatively moderate shrinkage of ice extent in 2021 . Rozumiem, dzisiaj lodu jest więcej niż wczoraj - wnioskujemy  że się ochładza - świetnie, ale odpowiedź na pytanie ile będzie lodu za rok brzmi: prawie na pewno mniej.

Pojedyncze roczne wyskoki niewiele zmieniają w trendzie. I teraz prpozycja zakładu: jeśli tegorocznej zimy 2021/2022 będzie w Arktyce lodu więcej niż 2020/2021 wpłacę 1000 zł na utrzymanie KW. W przeciwnym wypadku Ty płacisz - przyjmujesz?

Edited by Jajcenty
  • Upvote (+1) 2

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy analizujący zdjęcia satelitarne z Antarktyki zauważyli, że pod koniec 2022 roku doszło do katastrofalnego wydarzenia, w wyniku którego mogło zginąć nawet 10 000 młodych pingwinów cesarskich. Lód pod koloniami pingwinów rozpadł się, zanim młode miały szansę rozwinąć wodoodporne pióra, potrzebne im do przetrwania w wodzie. Zwierzęta utonęły lub zamarzły. Tragedia miała miejsce na zachodzie Antarktyki, u wybrzeży Morza Bellingshausena.
      Specjaliści twierdzą, że zagłada piskląt to zapowiedź wydarzeń, jakie będą miały miejsce w przyszłości. Jak mówi doktor Peter Fretwell z British Antarctic Survey, do końca wieku globalne ocieplenie zniszczy ponad 90% kolonii pingwinów cesarskich. Gatunek ten potrzebuje lodu morskiego. To stabilna platforma, na której wychowują młode. Jeśli jednak lód nie ma takiego zasięgu, jak powinien, albo rozpada się szybciej, to oznacza kłopoty dla tych ptaków, powiedział uczony w rozmowie z BBC News.
      Doktor Fretwell i jego zespół śledzili za pomocą satelitów pięć kolonii z okolic morza Bellingshausena. Dorosłe pingwiny cesarskie przybywają około marca na lód. Tam łączą się w pary i wychowują młode do czasu, aż są one zdolne do samodzielnego życia. Zwykle ma to miejsce na przełomie grudnia i stycznia. Jednak w ubiegłym roku lód rozpadł się w listopadzie, nie dając młodym pingwinom szans na dorośnięcie. W wyniku tego cztery z pięciu kolonii straciło wszystkie młode. Przetrwały tylko te z najmniejszej kolonii położonej najbardziej na północy.
      Od 2016 roku notowane są rekordowo niskie zasięgi lodu morskiego w Antarktyce. Najgorsza sytuacja panuje właśnie na Morzu Bellingshausena, gdzie w sezonie 2021/2022 i 2022/2023 niemal w ogóle nie było lodu. Przyczyną były wyjątkowo ciepłe wody morskie oraz układ wiatrów, które pchały lód w kierunku wybrzeża, uniemożliwiając zwiększanie jego zasięgu.
      Co gorsza, obecnie lód bardzo powoli się tam formuje, a to oznacza, że kolonie, które straciły młode, najprawdopodobniej nie będą się rozmnażały również w kolejnym sezonie. Maksymalny zasięg lodu morskiego w Antarktyce notuje się we wrześniu. Już teraz widać, że będzie on znacznie poniżej średniej. Pingwiny cesarskie mają coraz większe kłopoty. W latach 2018–2022 co trzecia z ponad 60 znanych kolonii została w jakiś sposób dotknięta zmniejszającym się zasięgiem lodu morskiego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Antarktyce występuje ukwiał Edwardsiella andrillae, który bardzo, ale to bardzo lubi lód. Do tego stopnia, że cały się w nim zakotwicza, a w wodzie znajduje się tylko wieniec czułków. To jedyne zwierzę morskie, które się tak zachowuje, w dodatku nikt nie wie, jak udaje mu się przeżyć.
      Zespół Franka Racka z University of Nebraska-Lincoln dokonał tego niespodziewanego odkrycia podczas geologicznych i środowiskowych badań terenowych, realizowanych w latach 2010-2011 w ramach Coulman High Project. Przez lód przewiercano się, by obejrzeć spodnią część Lodowca Szelfowego Rossa. Wykorzystano do tego pojazd podwodny SCINI (Submersible Capable of under-Ice Navigation and Imaging). To wtedy naukowcy natknęli się na dużą liczbę E. andrillae.
      E. andrillae to jedyny przedstawiciel rodzaju Edwardsiidae w Antarktyce. Od pozostałych zaliczanych do niego gatunków różni się liczbą czułków oraz rozmiarami i rozmieszczeniem parzydełek.
      Analizą próbek zajęła się Marymegan Daly z Uniwersytetu Stanowego Ohio. Sekcja ciała zwierzęcia niewiele dała, bo wyglądało ono tak samo jak inne ukwiały. Nigdy nie przypuszczałabym, że zakotwicza się w lodzie, bo w jego anatomii [i histologii] nie ma niczego szczególnego.
      Ponieważ E. andrillae nie przepchnąłby się przez twardy lód (czułki również nie na wiele by się zdały), Daly sądzi, że zwierzę musi wydzielać jakiś rozpuszczający go związek chemiczny. Tajemnicą jest także to, dzięki czemu ukwiał nie zamarza i jak właściwie się rozmnaża.
      Odpowiedzi na te pytania można by udzielić, badając DNA, jednak nie spodziewając się natknąć na zwierzęta, Amerykanie mieli ze sobą tylko środek konserwujący, który pozwalał utrwalić anatomię, ale przy okazji niszczył materiał genetyczny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inwazyjna bezskrzydła muchówka Eretmoptera murphyi, która skolonizowała antarktyczną wyspę Signy na Orkadach Południowych, wywołuje znaczące zmiany składu gruntu na wyspie, donoszą naukowcy z British Antarctic Survey i University of Birmingham. Zmiany, które mogą przygotować grunt pod migrację i przetrwanie na wyspie innych inwazyjnych gatunków.
      Muchówka żywi się martwą materią organiczną, gwałtownie przyspieszając jej rozkład. Z badań wynika, że na tych obszarach, gdzie E. murphyi występuje, poziom azotanów jest 3-5-krotnie wyższy niż tam, gdzie występują wyłącznie rodzime bezkręgowce.
      Gleba w Antarktyce jest bardzo uboga w składniki odżywcze, gdyż procesy rozkładu zachodzą tam bardzo powoli. Te składniki są w glebie, ale dopiero inwazyjna Eretmoptera murphyi je uwolniła. Ten gatunek działa tutaj jak inżynier gleby, podobnie do dżdżownic w klimacie umiarkowanym, mówi doktor Jesamine Barlett, główna autorka badań.
      Eretmoptera murphyi to gatunek rodzimy dla Georgii Południowej. Został on wprowadzony na Signy przypadkiem podczas eksperymentu botanicznego w latach 60. XX wieku. O tym, że gatunek zadomowił się na wyspie naukowcy dowiedzieli się 20 lat później. Wcześniej jedynymi żyznymi miejscami na Signy były te, w których na brzeg wychodziły gatunki wodno-lądowe, jak pingwiny czy mirungi. Teraz okazuje się, że poziom azotanów w miejscach skolonizowanych przez inwazyjne muchówki jest taki sam, jak tam, gdzie przebywają kolonie mirung. Populacja larw muchówek przekracza w niektórych miejscach 20 000 osobników na metr kwadratowy.
      Inwazyjny owad jest rozprzestrzeniany na butach turystów i naukowców. Stopniowo kolonizuje coraz większe obszary wyspy. Co więcej, przez jakiś czas może przetrwać w wodzie, co budzi obawy, że skolonizuje inne wyspy.
      Szczególną cechą Antarktyki jest fakt, że dotarło tu bardzo mało gatunków inwazyjnych. Priorytetem jest ochrona i zachowanie oryginalnego ekosystemu tego obszaru. Jednak to badanie pokazuje, że największe ze zwierząt mogą mieć gigantyczny wpływ na środowisko, mówi profesor ekologii Peter Convey z BAS. Antarktyka broniła się dotychczas przed inwazyjnymi gatunkami dzięki niskim temperaturom, niskiej wilgotności i ubóstwem składników odżywczych. Teraz, w obliczu ocieplającego się klimatu oraz inwazyjnej muchówki, która uwalnia do gleby składniki odżywcze, Antarktyka może być narażona na inwazje kolejnych obcych gatunków.
      Więcej na temat kolonizowania Signy przez Eretmoptera murphyi można przeczytać na łamach Soil Biology and Biochemistry.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Antarktyka to jedno z najlepszych na świecie miejsc do poszukiwań meteorytów. Jej suchy, pustynny klimat, powoduje, że fragmenty skał, które przed tysiącami lat spadły na Ziemię, w niewielkim stopniu ulegają wietrzeniu. Nie mówiąc już o tym, że ciemne meteoryty są dobrze widoczne na śnieżnobiałym tle. Nawet meteoryty, które zatonęły w lodzie, zostają z czasem wypchnięte w pobliżu powierzchni.
      Grupa naukowców, pracujących pod kierunkiem Marii Valdes z Field Museum i University of Chicago znalazła właśnie 5 meteorytów, w tym jeden z największych w Antarktyce – okaz o wadze 7,6 kilograma. Valdes mówi, że wśród około 45 000 meteorytów znalezionych na Antarktyce jedynie około 100 było podobnych rozmiarów lub większych. Rozmiar niekoniecznie ma znaczenie w przypadku meteorytów, czasem małe mikrometeoryty mogą mieć olbrzymią naukową wartość. Ale, oczywiście, znalezienie dużego meteorytu to rzadkość i ekscytujące wydarzenie, stwierdza uczona.
      W ubiegłym roku grupa naukowa prowadzona przez glacjolog Veronikę Tellenaar stworzyła mapę najbardziej obiecujących miejsc poszukiwań meteorytów w Antarktyce. Uczeni wzięli pod uwagę dane satelitarne, informacje o wcześniejszych znaleziskach, dane o temperaturze powierzchni i prędkości ruchu lodu. Na tej podstawie algorytm ocenił szanse na występowanie meteorytów w konkretnych lokalizacjach. Zespół Valdes jest pierwszym, który wybrał się na poszukiwania wykorzystując tę mapę. Uczeni wybrali pięć potencjalnych miejsc. Po 10 dnia poszukiwań, w jednym z nich znaleźli 5 meteorytów.
      Znaleziska trafią do Królewskiego Belgijskiego Instytutu Nauk Naturalnych, gdzie będą badane. Natomiast Valdes i każdy z naukowców biorących udział w wyprawie otrzymał próbki lodu z miejsc znalezienia meteorytów. W swoich rodzimych instytucjach będą poszukiwali w nich mikrometeorytów.
      Specjaliści szacują, że na Antarktyce znajduje się jeszcze 300 000 meteorytów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowe badania dostarczyły najsilniejszych jak dotychczas dowodów, że ziemskie kontynenty uformowały się w wyniku gigantycznych uderzeń meteorytów, do których dochodziło przede wszystkim w ciągu pierwszego miliarda lat istnienia Ziemi.
      Ziemia jest jedyną znaną nam planetą posiadającą kontynenty. Nie wiemy jednak, jak doszło do ich powstania. Od kilkudziesięciu lat znana jest hipoteza mówiąca, że kontynenty powstały w wyniku gigantycznych uderzeń meteorytów. Dotychczas jednak brakowało mocnych dowodów na jej poparcie.
      Doktor Tim Johnson i jego zespół z australijskiego Curtin University opublikowali na łamach Nature artykuł Giant impacts and the origin and evolution of continents, w którym opisują zdobyte przez siebie dowody na rolę meteorytów w formowaniu się kontynentów.
      Naukowcy przeprowadzili badania izotopów tlenu w kryształach cyrkonu znajdujących się w skałach magmowych kratonu [to stara niepodlegająca już fragmentacji część skorupy ziemskiej – red.] Pilbara w zachodniej Australii. Kraton ten uformował się 3,6 miliarda lat temu i obok kratonu Kaapvaal na południu Afryki jest najstarszym zachowanym fragmentem skorupy Ziemi. Badanie izotopów tlenu w kryształach cyrkonu pokazało, że doszło do odwróconego procesu topienia się skał, który rozpoczął się wyżej i postępował w dół. Takie zjawisko jest zgodne z wynikiem uderzenia wielkiego meteorytu, mówi uczony.
      Naukowcy wyróżnili co najmniej trzy etapy tworzenia się kratonu Pilbara. Izotopy tlenu w cyrkonie sprzed ok. 3,6 miliarda lat wskazują na rozpoczęcie procesu masowego topnienia skał. Doszło do niego w wyniku wielkich uderzeń meteorytów, które doprowadziły do popękania skorupy ziemskiej i rozpoczęcia długotrwałej aktywności geotermalnej w wyniku interakcji z globalnym oceanem.
      Drugi etap związany jest z cyrkonem sprzed 3,4 miliarda lat, który jest współczesny najstarszym znanym sferulom, czyli drobnym kulkom szkliwa powstałym w wyniku uderzenia meteorytu w skały. Cyrkony etapu trzeciego są zaś wynikiem recyklingu skał suprakrustalnych.
      Przeprowadzone przez nas badania dostarczają pierwszych mocnych dowodów, że proces, który doprowadził do utworzenia się kontynentów, rozpoczął się od gigantycznych uderzeń meteorytów. Uderzenia te były podobne do tego, które zabiło dinozaury, ale miały miejsce miliardy lat wcześniej, mówi Johnson. Naukowiec dodaje, że zrozumienie tworzenia się i ewolucji kontynentów jest niezwykle ważne, gdyż to na lądach istnieje większość ziemskiej biomasy i ważnych minerałów. Istnienie tych minerałów to wynik procesu dyferencjacji skorupy ziemskiej, który rozpoczął się wraz z tworzeniem się pierwszych mas lądowych, a kraton Pilbara jest tylko jednym z nich, dodaje.
      Teraz Johnson i jego zespół chcą zbadać, czy w innych starych skałach na Ziemi zauważą podobny schemat.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...