Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Białka blokujące HIV skuteczne przeciwko Eboli i Zice. Być może pomogą w walce z COVID-19

Rekomendowane odpowiedzi

Białka z rodziny inkorporatorów seryny (SERINC) są znane ze swojego działania jako inhibitory retrowirusów takich jak HIV. Szczególnie silnym inhibitorem jest SERINC5, które potrafi wniknąć do wnętrza wirusa HIV i obniżyć jego zdolność do infekowania komórek, a dodatkowo zwiększa jego podatność na działanie przeciwciał. Teraz odkryto, że białka SERINC są też skuteczne przeciwko wirusom Ebola i Zika. Obecnie naukowcy sprawdzają, jak sprawują się one w walce z SARS-CoV-2.

Naukowcy z Ohio State University zauważyli podczas laboratoryjnych badań na kulturach komórkowych, że aktywność sygnałowa protein SERINC pomogła chronić komórki przed zarażeniem HIV, Ziką i Ebolą.

Profesor wirusologii Shan-Lu Liu podkreśla, że jedną rzeczą jest opisane już wyżej działanie SERINC5 polegające na wniknięcie do wirusa, ale zupełnie czym innym jest obecne odkrycie, iż białko to wpływa wzmacniająco na antywirusowy szlak sygnałowy.

Wirusy mogą wytworzyć sposoby ochrony przed bezpośrednio działającymi na nie niekorzystnymi czynnikami. Jeśli jednak ta proteina jest w stanie wpływać na kluczowy szlak sygnałowy, bez bezpośredniego wpływania na wirusa, to wirus ma ograniczone możliwości obrony przed takim działaniem, wyjaśnia Liu, który jest też dyrektorem w Centrum Badań nad Retrowirusami Ohio State University. Jeśli te molekuły będą w ten sposób działały u ludzi i zwierząt, to możemy zacząć myśleć o opracowaniu bardzo szerokiej terapii antywirusowej.

Profesor Liu i jego zespół od lat badają wyścig ewolucyjny, jaki odbywa się pomiędzy wirusem HIV a ludzkim układem odpornościowym. W 2019 roku opisali oni w jaki sposób proteina Nef wirusa HIV pozbywa się z wirusa białek SERINC, by zapewnić wirusowi lepszą możliwość zarażania.

Teraz uczeni bliżej przyjrzeli się, jak działa SERINC5 podczas kolejnych etapów infekcji HIV. Odkryli, że proteina ta nie tylko wzmacnia sygnały prowadzące do produkcji zwalczających patogeny interferonów typu 1, ale również działa podobnie na sygnały NF-kB, kompleksu białkowego odgrywającego kluczową rolę w reakcji na infekcję.

SERINC5 nie moduluje wspomnianych sygnałów samodzielnie. Łączy siły z proteinami MAVS i TRAF6. Jednak profesor Liu przyznaje, że jeszcze nie do końca rozumie sposób działania SERINC5.

Podczas badań laboratoryjnych naukowcy zauważyli, że gdy w kulturach komórkowych zostaje zainicjowana infekcja wirusowa, SERINC5 przenosi się z powierzchni komórki w pobliże mitochondrium, pozostając zaraz za otaczającą je błoną. Tam wraz z MAVS i TRAF6 tworzy jeden duży kompleks. Agregacja tych protein wskazuje, że potrzebują się nawzajem i to jest bardzo ekscytujące odkrycie. Tak wielki kompleks może bowiem przyłączać kolejne molekuły, zwiększając siłę swojego oddziaływania, cieszy się Liu.

Molekuły te należą do części całego zestawu sygnałów, które prowadzą do pojawiania się interferonów typu I i NF-kB, kluczowych elementów w walce z infekcją wirusową na jej wczesnym etapie. Eksperymenty wykazały, że taki mechanizm działania SERINC5 oraz MAVS i TRAF6 znacznie ogranicza możliwości wirusów HIV, Zika i Ebola. Gdy zaś naukowcy zmodyfikowali komórki tak, by nie wytwarzały proteiny SERINC5, wirusy nie tylko z łatwością je zarażały, ale też łatwiej się w nich replikowały. To pokazuje, jak ważne jest białko SERINC5 oraz sugeruje, że może ono działać na szerokie spektrum wirusów.

Naukowcy prowadzili swoje badania na proteinach SERINC5 i SERINC3, jednak nie można wykluczyć, że inne białka z tej rodziny działają podobnie. Autorzy badań mówią, że wiele muszą się jeszcze nauczyć. Chcieliby np. wiedzieć, co powoduje, że SERINC5 przenosi się z powierzchni komórki w pobliże mitochondrium oraz jaka jest rola tego białka, gdy nie ma infekcji wirusowej.

Uczeni sądzą też, że SERINC5 może pomóc w walce z COVID-19. Myślę, że proteiny SERINC powinny blokować działanie SARS-CoV-2, gdyż wiemy, że interferony typu I odgrywają ważną rolę w kontrolowaniu infekcji tym wirusem na wczesnych jej etapach, a ta molekuła wzmacnia sygnały prowadzące do produkcji interferonów typu I. Odkrycie proteiny, która może wpływać na kluczowy szlak sygnałowy podczas infekcji tak różnymi wirusami daje podstawy, by wierzyć, że może ona mieć szerokie działanie antywirusowe, mówi Liu.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Tegoroczną Nagrodę Nobla w dziedzinie fizjologii lub medycyny otrzymali Katalin Karikó i Drew Weissmann za odkrycia, które umożliwiły opracowanie efektywnych szczepionek mRNA przeciwko COVID-19. W uzasadnieniu przyznania nagrody czytamy, że prace Karikó i Wiessmanna w olbrzymim stopniu zmieniły rozumienie, w jaki sposób mRNA wchodzi w interakcje na naszym układem odpornościowym". Tym samym laureaci przyczynili się do bezprecedensowo szybkiego tempa rozwoju szczepionek, w czasie trwania jednego z największych zagrożeń dla ludzkiego życia w czasach współczesnych.
      Już w latach 80. opracowano metodę wytwarzania mRNA w kulturach komórkowych. Jednak nie potrafiono wykorzystać takiego mRNA w celach terapeutycznych. Było ono nie tylko niestabilne i nie wiedziano, w jaki sposób dostarczyć je do organizmu biorcy, ale również zwiększało ono stan zapalny. Węgierska biochemik, Katalin Karikó, pracowała nad użyciem mRNA w celach terapeutycznych już od początku lat 90, gdy była profesorem na University of Pennsylvania. Tam poznała immunologa Drew Weissmana, którego interesowały komórki dendrytyczne i ich rola w układzie odpornościowym.
      Efektem współpracy obojga naukowców było spostrzeżenie, że komórki dendrytyczne rozpoznają uzyskane in vitro mRNA jako obcą substancję, co prowadzi co ich aktywowania i unicestwienia mRNA. Uczeni zaczęli zastanawiać się, dlaczego do takie aktywacji prowadzi mRNA transkrybowane in vitro, ale już nie mRNA z komórek ssaków. Uznali, że pomiędzy oboma typami mRNA muszą istnieć jakieś ważne różnice, na które reagują komórki dendrytyczne. Naukowcy wiedzieli, że RNA w komórkach ssaków jest często zmieniane chemicznie, podczas gdy proces taki nie zachodzi podczas transkrypcji in vitro. Zaczęli więc tworzyć różne odmiany mRNA i sprawdzali, jak reagują nań komórki dendrytyczne.
      W końcu udało się stworzyć takie cząsteczki mRNA, które były stabilne, a po wprowadzeniu do organizmu nie wywoływały reakcji zapalnej. Przełomowa praca na ten temat ukazała się w 2005 roku. Później Karikó i Weissmann opublikowali w 2008 i 2010 roku wyniki swoich kolejnych badań, w których wykazali, że odpowiednio zmodyfikowane mRNA znacząco zwiększa produkcję protein. W ten sposób wyeliminowali główne przeszkody, które uniemożliwiały wykorzystanie mRNA w praktyce klinicznej.
      Dzięki temu mRNA zainteresowały się firmy farmaceutyczne, które zaczęły pracować nad użyciem mRNA w szczepionkach przeciwko wirusom Zika i MERS-CoV. Gdy więc wybuchła pandemia COVID-19 możliwe stało się, dzięki odkryciom Karikó i Weissmanna, oraz trwającym od lat pracom, rekordowo szybkie stworzenie szczepionek.
      Dzięki temu odkryciu udało się skrócić proces, dzięki czemu szczepionkę podajemy tylko jako stosunkowo krótką cząsteczkę mRNA i cały trik polegał na tym, aby ta cząsteczka była cząsteczką stabilną. Normalnie mRNA jest cząsteczką dość niestabilną i trudno byłoby wyprodukować na ich podstawie taką ilość białka, która zdążyłaby wywołać reakcję immunologiczną w organizmie. Ta Nagroda Nobla jest m.in. za to, że udało się te cząsteczki mRNA ustabilizować, podać do organizmu i wywołują one odpowiedź immunologiczną, uodparniają nas na na wirusa, być może w przyszłości bakterie, mogą mieć zastosowanie w leczeniu nowotworów, powiedziała Rzeczpospolitej profesor Katarzyna Tońska z Uniwersytetu Warszawskiego.
      Myślę, że przed nami jest drukowanie szczepionek, czyli dosłownie przesyłanie sekwencji z jakiegoś ośrodka, który na bieżąco śledzi zagrożenia i na całym świecie produkcja już tego samego dnia i w ciągu kilku dni czy tygodni gotowe preparaty dla wszystkich. To jest przełom. Chcę podkreślić, że odkrycie noblistów zeszło się z możliwości technologicznymi pozwalającymi mRNA sekwencjonować szybko, tanio i dobrze. Bez tego odkrycie byłoby zawieszone w próżni, dodał profesor Rafał Płoski z Warszawskiego Uniwersytetu Medycznego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      U większości osób chorujących na COVID-19 pojawiały się objawy ze strony centralnego układu nerwowego, takie jak utrata węchu czy smaku. Naukowcy wciąż badają, w jaki sposób SARS-CoV-2 wywołuje objawy neurologiczne i jak wpływa na mózg. Autorzy najnowszych badań informują, że ciężka postać COVID-19 wywołuje zmiany w mózgu, które odpowiadają zmianom pojawiającym się w starszym wieku.
      Odkrycie to każe zadać sobie wiele pytań, które są istotne nie tylko dla zrozumienia tej choroby, ale dla przygotowania społeczeństwa na ewentualne przyszłe konsekwencje pandemii, mówi neuropatolog Marianna Bugiani z Uniwersytetu w Amsterdamie.
      Przed dwoma laty neurobiolog Maria Mavrikaki z Beth Israel Deaconess Medical Center w Bostonie trafiła na artykuł, którego autorzy opisywali pogorszenie zdolności poznawczych u osób, które przeszły COVID-19. Uczona postanowiła znaleźć zmiany w mózgu, które mogły odpowiadać za ten stan. Wraz ze swoim zespołem zaczęła analizować próbki kory czołowej 21 osób, które zmarły z powodu ciężkiego przebiegu COVID-19 oraz osoby, która w chwili śmierci była zarażona SARS-CoV-2, ale nie wystąpiły u niej objawy choroby. Próbki te porównano z próbkami 22 osób, które nie były zarażone SARS-CoV-2. Drugą grupą kontrolną było 9 osób, które nie zaraziły się koronawirusem, ale przez jakiś czas przebywały na oddziale intensywnej opieki zdrowotnej lub były podłączone do respiratora. Wiadomo, że tego typu wydarzenia mogą mieć poważne skutki uboczne.
      Analiza wykazały, że geny powiązane ze stanem zapalnym i stresem były bardziej aktywne u osób, które cierpiały na ciężką postać COVID-19 niż osób z grup kontrolnych. Z kolei geny powiązane z procesami poznawczymi i tworzeniem się połączeń między neuronami były mniej aktywne.
      Zespół Mavrikaki dokonał też dodatkowego porównania tkanki mózgowej osób, które cierpiały na ciężką postać COVID-19 Porównano ją z 10 osobami, które w chwili śmierci miały nie więcej niż 38 lat oraz z 10 osobami, które zmarły w wieku co najmniej 71 lat. Naukowcy wykazali w ten sposób, że zmiany w mózgach osób cierpiących na ciężki COVID były podobne do zmian w mózgach osób w podeszłym wieku.
      Amerykańscy naukowcy podejrzewają, że wpływ COVID-19 na aktywność genów w mózgu jest raczej pośredni, poprzez stan zapalny, a nie bezpośredni, poprzez bezpośrednie zainfekowanie tkanki mózgowej.
      Uczeni zastrzegają przy tym, że to jedynie wstępne badania, które mogą raczej wskazywać kierunek dalszych prac, niż dawać definitywne odpowiedzi. Mavrikaki mówi, że nie ma absolutnej pewności, iż obserwowane zmiany nie były wywołane innymi infekcjami, ponadto w badaniach nie w pełni kontrolowano inne czynniki ryzyka, jak np. otyłość czy choroby mogące ułatwiać rozwój ciężkiej postaci COVID-19, a które same w sobie mogą prowadzić do stanów zapalnych wpływających na aktywność genów centralnego układu nerwowego.
      Innym pytaniem, na jakie trzeba odpowiedzieć, jest czy podobne zmiany zachodzą w mózgach osób, które łagodniej przeszły COVID-19. Z innych badań wynika bowiem, że nawet umiarkowanie ciężki COVID mógł powodować zmiany w mózgu, w tym uszkodzenia w regionach odpowiedzialnych za smak i węch. Nie wiadomo też, czy tego typu zmiany się utrzymują i na jak długo.
      Ze szczegółami badań można zapoznać się w artykule Severe COVID-19 is associated with molecular signatures of aging in the human brain.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od początku pandemii COVID-19 możemy oglądać w mediach zdjęcia i grafiki reprezentujące koronawirusa SARS-CoV-2. Wyobrażamy go sobie jako sferę z wystającymi białkami S. Obraz ten nie jest do końca prawdziwy, gdyż w rzeczywistości wirion – cząstka wirusowa zdolna do przetrwania poza komórką i zakażania – jest elipsoidą, która może przyjmować wiele różnych kształtów. Z rzadka jest to kształt kulisty.
      Teraz naukowcy z kanadyjskiego Queen's University oraz japońskiego Okinawa Institute of Science and Technology (OIST) przeprowadzili modelowanie komputerowe, podczas którego zbadali, jak różne kształty wirionów wpływają na zdolność SARS-CoV-2 do infekowania komórek.
      Naukowcy sprawdzali, jak wiriony o różnych kształtach przemieszczają się w płynie, gdyż to właśnie wpływa na łatwość transmisji. Gdy wirion trafi do naszych dróg oddechowych, przemieszcza się w nosie i płucach. Chcieliśmy zbadać jego mobilność w tych środowiskach, mówi profesor Eliot Fried z OIST.
      Uczeni modelowali dyfuzję rotacyjną, która określa, z jaką prędkością cząstki obracają się wokół osi prostopadłej do powierzchni błony. Cząstki bardziej gładkie i bardziej hydrodynamiczne napotykają mniejszy opór i obracają się szybciej. W przypadku koronawirusa prędkość obrotu wpływa na zdolność do przyłączenia się do komórki i jej zainfekowania. Jeśli cząstka obraca się zbyt szybko, może mieć zbyt mało czasu na interakcję z komórką i jej zarażenie. Gdy zaś obraca się zbyt wolno, może nie być w stanie przeprowadzić interakcji w odpowiedni sposób, wyjaśnia profesor Fried.
      Uczeni modelowali elipsoidy spłaszczone i wydłużone. Sfera to rodzaj elipsoidy obrotowej, która ma wszystkie trzy półosie równe. Elipsoida spłaszczona ma jedną oś krótszą od dwóch pozostałych, elipsoida wydłużona – jedną oś dłuższą od dwóch pozostałych. Możemy sobie to wyobrazić przyjmując, że elipsoida spłaszczona, to kula, która zmienia kształt tak, by stać się monetą, a elipsoida wydłużona to kula, która próbuje stać się prętem. Oczywiście w przypadku wirionów zmiany są bardzo subtelne. Aby uzyskać większy realizm, naukowcy dodali do swoich elipsoid wystające białka S, symbolizowane przez kule na powierzchni elipsoidy.
      Przyjęliśmy też założenie, że każde z białek S ma ten sam ładunek elektryczny, przez co odpychają się od siebie, to zaś powoduje, że są równomiernie rozłożone na całej powierzchni elipsoidy, dodaje doktor Vikash Chaurasia z OIST.
      Analizy wykazały, że im bardziej kształt wirionu odbiega od kształtu kuli, tym wolniej się on obraca. To może oznaczać, że łatwiej mu będzie przyłączyć się do komórki i ją zarazić. Autorzy badań przyznają, że ich model jest uproszczony, jednak pozwala nam lepiej zrozumieć właściwości koronawirua i jedne z czynników wpływających na łatwość, z jaką nas zaraża.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ból to pożyteczny sygnał alarmowy, informujący nas o uszkodzeniu tkanek czy chorobie i skłaniający do wycofania się z nieprzyjemnej sytuacji oraz poszukania pomocy u lekarza. Gdy rana się zagoi, ból powinien ustąpić, ale wiele osób cierpi na ból nawet po całkowitym zagojeniu się rany. Co więcej, olbrzymia liczba osób na całym świecie zmaga się z chronicznym bólem, któremu w wielu przypadkach nie potrafimy przypisać żadnej przyczyny w postaci zranienia czy choroby.
      Mimo że z chronicznym bólem zmagają się miliony ludzi, wciąż jest on jednym z najsłabiej zarządzanych przez medycynę problemów zdrowotnych. Na łamach Science Translational Medicine ukazał się artykuł, którego autorzy informują o potencjalnych nowych metodach leczenia chronicznego bólu, a metody w zaskakujący sposób wiążą się z... nowotworem płuc. Autorami odkrycia są naukowcy z Instytutu Biotechnologii Molekularnej Austriackiej Akademii Nauk, Wydziału Medycyny Uniwersytetu Harvarda oraz Boston Children's Hospital.
      Już poprzednio wykazaliśmy, że neurony wytwarzają specyficzny metabolit, BH4, który napędza takie rodzaje chronicznego bólu jak ból neuropatyczny czy zapalny. Stężenie BH4 bardzo dobrze korelowało z intensywnością bólu. Uznaliśmy więc szlak sygnałowy BH4 za dobry cel poszukiwania nowych terapii przeciwbólowych, mówi Shane Cronin z Instytutu Biotechnologii Molekularnej.
      Naukowcy zaczęli więc poszukiwanie leków, które mogłyby obniżyć poziom BH4 w neuronach. W tym celu dokonali „analizy fenotypowej” 1000 substancji leczniczych zatwierdzonych przez FDA. Analiza ta pozwoliła im na poszukiwanie konkretnych, obecnych już na rynku, leków, które mogłyby pomóc. Analiza pozwoliła np. połączyć znane przeciwbólowe działanie niektórych substancji, jak kapsaicyna czy klonidyna, ze szlakiem sygnałowym BH4.
      Dzięki analizie dokonaliśmy też zaskakujących odkryć. Zauważyliśmy że flufenazyna – lek psychotropowy używany w leczeniu schizofrenii – blokuje szlak BH4 w uszkodzonych nerwach. Wykazaliśmy też, że działa w przypadku chronicznego bólu, mówi Cronin. Naukowcy przeprowadzili eksperymenty na myszach i stwierdzili, że flufenazyna wykazuje działanie przeciwbólowe już w niskich, bezpiecznych dla ludzi dawkach.
      Uczeni odkryli niespodziewany związek pomiędzy szlakiem sygnałowym BH4 a szlakiem sygnałowym EGFR/KRAS, który jest istotnym elementem powstawania i progresji wielu nowotworów. Okazało się, że zablokowanie szlaku EGFR/KAS zmniejsza wrażliwość na ból poprzez zmniejszenie poziomu BH4. Jako, że geny EGFR i KRAS są dwoma najczęściej podlegającymi mutacjom genami w nowotworach płuc, naukowcy przyjrzeli się BH4 w przypadkach nowotworów płuc na modelu mysim. Ku ich zdumieniu usunięcie ważnego enzymu GCH1 ze szlaku sygnałowego BH4 skutkowało zmniejszeniem liczby guzów oraz znacznym wydłużeniem życia myszy z nowotworem płuc z mutacją KRAS. Odkrycie wspólnych elementów chronicznego bólu i nowotworów płuc otwiera nowe możliwości leczenia obu schorzeń.
      Jednym z najbardziej interesujących aspektów badań jest odkrycie mechanistycznego związku pomiędzy bólem a nowotworem płuc. Ten sam wyzwalacz, który rozpoczyna wzrost guza płuc wydaje się być zaangażowany w uruchamianie ścieżki chronicznego bólu, jaki często przecież odczuwają osoby chore na nowotwory. Wiemy też, że nerwy czuciowe mogą napędzać nowotwory, a to wyjaśniałoby zaklęty krąg nowotworów i związanego z nimi bólu, stwierdza Josef Penninger, dyrektor Instytutu Biotechnologii Molekularnej. Zrozumienie tego wzajemnego związku będzie pomocne nie tylko w leczeniu nowotworów, ale również pozwoli poprawić jakość życia pacjentów nowotworowych i ulżyć ich bólowi, dodaje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z La Jolla Institute for Immunology (LJI) przeprowadzili pierwsze bezpośrednie porównanie czterech szczepionek przeciwko SARS-CoV-2. Naukowcy sprawdzali, jak w ciągu sześciu miesięcy od podania szczepionki zmieniają się poziomy limfocytów T, limfocytów B oraz przeciwciał. Badania, których wyniki opublikowano w piśmie Cell, są pierwszymi, w ramach których porównano jak na ten sam patogen działają trzy różne rodzaje szczepionek czyli szczepionki mRNA (Pfizer-BioNTech i Moderna), rekombinowana z adjuwantem (Novavax) oraz wektorowa (Janssen/J&J).
      Nie przyznajemy szczepionkom punktów. Dotychczas nie wykonywano takiego bezpośredniego porównania działania różnych szczepionek u ludzi, którym podano je w podobnym czasie. Nie prowadzono tego typu analiz w środowisku rzeczywistym. Lepsze zrozumienie wpływu szczepionek pozwoli nam udoskonalić metody wytwarzania szczepionek w przyszłości, mówi profesor Daniela Weiskopf, która wraz z profesorem Shane'em Crottym stała na czele zespołu badawczego.
      Autorzy badań dowiedzieli się, że po 6 miesiącach osoby, które otrzymały szczepionkę Moderny miały najwięcej przeciwciał, niższy ich poziom zauważono u zaszczepionych produktami Pfizera i Novavaksu, a najmniej przeciwciał znaleziono w organizmach osób, które przyjęły szczepionkę Janssen/J&J. Jednak to właśnie ci zaszczepieni preparatem Janssen/J&J mieli po 6 miesiącach najwięcej limfocytów pamięci B. U wszystkich uczestników badań zauważono podobny poziom CD4+ T.
      Osoby, które przyjęły szczepionkę Novavax charakteryzował najniższy poziom CD8+ T. Jednak, ogólnie rzecz biorąc, po 6 miesiącach limfocyty CD8+ T znaleziono u 60–70 procent zaszczepionych.
      Badanie potwierdza, że większość zaszczepionych, niezależnie od wykorzystanej technologii, utrzymuje wysoki poziom odpowiedzi immunologicznej przez sześć miesięcy po zaszczepieniu. Autorzy badań ostrzegają, że ta pamięć immunologiczna może nie zapobiegać ponownej infekcji, ale pomaga w łagodniejszym przejściu choroby. Nawet, jeśli trudno jest długoterminowo utrzymać wysoki poziom przeciwciał, to obecność stabilnej odporności wskazuje, że w przypadku infekcji, odporność może zostać reaktywowana bardzo szybko, w ciągu dni, stwierdzają autorzy badań.
      W najbliższej przyszłości specjaliści z LJI chcą sprawdzić wpływ dawek przypominających na długoterminową pamięć immunologiczną. Badają też, jak reagują organizmy osób zaszczepionych na kontakt z nowymi odmianami SARS-CoV-2.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...