Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wysysanie metali z dna morskiego sposobem na uniknięcie kryzysu?

Recommended Posts

W nadchodzących dekadach przewidywany jest gwałtowny wzrost zapotrzebowania na akumulatory dla samochodów elektrycznych. Tymczasem już teraz są problemy z dostawami miedzi, kobaltu, litu czy niklu. Możemy więc spodziewać się problemów z realizacją zamówień na metale i wzrostu cen. Niektóre firmy chcą więc wydobywać metale z dna morskiego. Może nie tyle wydobywać, co wysysać, gdyż pomiędzy Meksykiem a Hawajami na dnie spoczywają grudki zawierające więcej kobaltu i niklu niż wszystkie złoża lądowe. Jednak planom takim sprzeciwia się część naukowców, a w ich ślady idą wielkie światowe koncerny.

Wydobycie metali znajdujących się na lądach wiąże się z olbrzymim zanieczyszczeniem i zniszczeniem środowiska, łamaniem praw człowieka i emisją gazów cieplarnianych. Dość wspomnieć, że większość światowych zasobów niklu znajduje się pod lasami deszczowymi Indonezji, Demokratyczna Republika Kongo dostarcza 70% kobaltu, a Chiny chętnie używają swojej pozycji na rynku metali ziem rzadkich oraz przetwórcy surowych materiałów w grze politycznej. Im bardziej wyczerpujemy złoża wysokiej jakości, tym bardziej sięgamy po te niższej jakości, z czym wiąże się coraz większe zanieczyszczenie środowiska.

Pole konkrecjonośne Clarion-Clipperton (CCZ) rozciąga się pomiędzy Meksykiem a Hawajami. To tam na dnie oceanu, na głębokości kilku tysięcy metrów, spoczywają polimetaliczne konkrecje, grudki zawierające duże ilości różnych metali. Kanadyjska firma Metals Company chce być pierwszą, która dostarczy na rynek metale z tych konkrecji. Ma to się stać w 2024 roku.

Jako, że konkrecje leżą na dnie, nie są potrzebne żadne wiercenia czy kopanie. Metals Company chce wysłać statek, który za pomocą specjalnego urządzenia będzie zasysał grudki. Następnie zostaną one przewiezione do zakładu, który pozyska z nich kobalt, nikiel, miedź czy mangan. Zakład taki będzie prawdopodobnie znajdował się w Teksasie, gdyż jest tam łatwy dostęp do portów oraz tania energia ze źródeł odnawialnych. Kanadyjczycy twierdzą, że chcą pozyskiwać metale wyłącznie za pomocą energii odnawialnej i nie produkując przy tym żadnych odpadów stałych. Nie chcemy, by z rynkiem samochodów elektrycznych stało się to, co z rynkiem półprzewodników, który w tym roku ucierpiał z powodu braku surowców. Pytanie brzmi, gdzie będziemy wydobywać metale. Zróbmy to na podmorskich pustyniach, na równinach abisalnych, miejscach, w których życie występuje bardzo rzadko, w przeciwieństwie do życia w lasach deszczowych. Tam na 1 m2 powierzchni występuje 1500 razy mniej życia niż w lasach deszczowych, mówi Craig Shesky, prezes ds. finansowych Metal Company.

Jednak sytuacja nie jest taka oczywista. Profesor oceanografii Craig Smith z Uniwersytetu Hawajskiego, który prowadził kilka ekspedycji badawczych w CCZ mówi, że równiny abisalne to bardzo wrażliwy, dziewiczy ekosystem, nietknięty ręką człowieka. I trudno jest w tej chwili ocenić jego wartość. Co prawda ilość biomasy jest tam znacznie mniejsza niż w lasach deszczowych, ale bioróżnorodność jest zadziwiająco duża. Większość gatunków, na które natknęliśmy się podczas naszych badań była wcześniej nieznana nauce. Sądzimy, że to centrum bioróżnorodności, mówi uczony. Jego zdaniem, działania wydobywcze na równinach abisalnych mogą poważnie zaszkodzić, a może nawet całkowicie wytępić wiele gatunków, których jeszcze nie znamy, a osady morskie, wzniesione podczas wydobywania konkrecji, mogą przemieszczać się przez setki kilometrów, zagrażając różnym organizmom na swojej trasie. Poza tym same konkrecje to habitaty tysięcy mikroorganizmów.

Shesky odpowiada, że 70% organizmów żywych w tamtych regionach to bakterie, a niedawno prowadzone badania wykazały, że wzruszone podczas prac wydobywczych osady opadają szybciej niż dotychczas sądzono. Powołuje się też na badania, które mówią, że wytwarzanie metali z konkrecji będzie powodowało 10-krotnie mniejszą emisję gazów cieplarnianych, niż pozyskiwanie tych samych metali z rud w złożach lądowych.

Problemem dla Metals Company może być nie tylko postawa naukowców, ale niektórych wielkich koncernów. BMW, Google, Samsung i Volvo oświadczyły, że nie będą kupowały metali pozyskanych z konkrecji, dopóki lepiej nie będziemy rozumieli wpływu ich wydobycia na środowisko naturalne.

W ubiegłym roku Metals Company przyznała grant w wysokości 2,9 milionów dolarów na zbadanie wpływu działalności wydobywczej w CCZ na środowisko naturalne. Badania mają objąć całą kolumnę wodną, od dna do powierzchni oceanu. Będą je prowadzili naukowcy z Uniwersytetu Hawajskiego, Texas A&M University oraz Japan Agency for Marine-Earth Science and Technology.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Przypomniało mi się, że w konkrecjach nie takie rzeczy się znajduje :) Na YT można zerknąć, jak entuzjaści wyszukują konkrecje ze skamielinami.

IMG_0158.JPG.46aa38c75bccaa1f14481f5d4df

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

W roku 1974 wydobywanie konkrecji z dna oceanu rozpoczęli amerykanie przez firmę Global Marine Development Inc. Dziwnym zbiegiem okoliczności, jedyne co wydobyto to radziecki okręt podwodny K-129 z prawdopodobnie dwiema torpedami z głowicami atomowymi. Ciekawe co teraz i komu zatonęło?

Share this post


Link to post
Share on other sites

Słyszałem o tym kiedyś, ale nie pamiętam szczegółów. Podnieśli cały okręt czy się przełamał odzyskali tylko część? Ciekawa operacja, która była zakrojona na tak szeroką skalę, że powodowało to trudności natury bezpieczeństwa, bo wszystko było utrzymane w najwyższej tajemnicy.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Jeśli jesteś zainteresowany poczytaj na temat projektu "Azorian". Podczas podnoszenia okrętu K-129 doszło do jego przełamania i wg jednych źródeł odzyskano jedynie ok. 12 m części rufowej z 2 torpedami atomowymi. Inne źródła twierdzą, że odzyskano cały okręt z rakietami balistycznymi R-21 oraz książki kodowe. Jedyne co jest pewne, to że wykorzystano wydobycie konkrecji jako idealną przykrywkę dla tajnej operacji. 

Share this post


Link to post
Share on other sites
W dniu 15.09.2021 o 20:57, cyjanobakteria napisał:

Przypomniało mi się, że w konkrecjach nie takie rzeczy się znajduje :) Na YT można zerknąć, jak entuzjaści wyszukują konkrecje ze skamielinami.

Mam obawy że mogą zanieczyścić dno oceanu które może zawierać jakieś ciekawe informacje co doprowadzi do ich bezpowrotnej utraty.

Share this post


Link to post
Share on other sites

To na pewno, bo przetasują całe dno. Z tego, co widziałem kątem oka na Google, to statek zasysa materiał z dna, odsiewa i pobiera konkrecje, a resztę wypłukuje z powrotem. Więc zniszczą strukturę dna, warstwy, etc. Aczkolwiek, każda działalność człowiek jest szkodliwa. Kiedyś czytałem artykuł o rabunkowej wycince w Amazonii pod węgiel drzewny do obróbki stali, która potem służyła do wyrobu sprzętu AGD. Więc nie wiem co jest gorsze.

potential_impacts_from_deep-sea_mining.p

 

Jeszcze znalazłem diagram przedstawiający więcej zagrożeń.

manoa-soest-deep-sea-mining-2.jpg

2-scientistsur.jpg

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Jako korzystny efekt uboczny może wystąpić nawożenie oceanu pierwiastkami metalicznymi i być może uda wchłonąć gigantyczną ilość CO2 z atmosfery.

Jako  minus - wzrost koncentracji metali ciężkich w wodzie i zredukowanie tlenu rozpuszczonego w wodzie.

Share this post


Link to post
Share on other sites
53 minuty temu, cyjanobakteria napisał:

Śmieci na pustyniach abisalnych, wszędzie śmieci.

No to bardzo konkretna konkrecja. Jak już będziemy postapokaliptyczną dystopią, to taka konkrecja uczyni znalazcę bogaczem ;)

 

Share this post


Link to post
Share on other sites

Jest krzesło do wzięcia, które stoi na dnie, co widać w 03:00 minucie. Swoją drogą, wygląda dosyć upiornie. Każdy kilometr głębokości to 1000 ton na m2.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Pierwsze ogólnoświatowe badania zanieczyszczeń pyłem zawieszonym PM2.5 wykazało, że jedynie na 0,18% powierzchni Ziemi stężenie pyłu zawsze jest niższe niż określona przez WHO granica bezpieczeństwa. A czystym powietrzem oddycha zwykle tylko 0,001% ludzkości.
      Autorzy badań, naukowcy z kanadyjskiego Monash University zauważyli również, że o ile w ciągu dwóch pierwszych dekad XXI wieku stężenie PM2.5 w powietrzu nad Europą i Ameryką Północną zmniejszyło się, to wzrosło nad Azją Południową, Australią, Nową Zelandią, Ameryką Południową i Karaibami. Średnio globalnie normy PM2.5 są przekroczone przez 70% roku.
      Za pomocą metod maszynowego uczenia zintegrowaliśmy wiele danych meteorologicznych i geologicznych, by ocenić dzienną koncentrację PM2.5 na obszarach o wymiarach 10x10 kilometrów obejmujących całą planetę. Braliśmy pod uwagę lata 2000-2019 i skupiliśmy się na miejscach, gdzie poziom PM2.5 przekraczał 15 µg/m3, czyli poziom bezpieczeństwa określony przez WHO. Trzeba dodać, że poziom ten budzi kontrowersje, mówi główny autor badań Yuming Guo.
      Naukowcy zauważyli też, że globalna ilość PM2.5 nieco spadła w badanym okresie. Do roku 2019 koncentracja pyłów powyżej 15 µg/m3 utrzymywała się przez ponad 70% dni w roku, ale na południu i wschodzie Azji było to ponad 90% dni.
      Średnia globalna koncentracja w latach 2000–2019 wynosiła w skali globu 32,8 µg/m3. Najwyższa była zaś w na wschodzie (50,0 µg/m3) i południu (37,2 µg/m3) Azji. Na trzecim miejscu znajdowała się północna Afryka ze średnim stężeniem 30,1 µg/m3. Najniższe średnie roczne stężenia zanotowano zaś w Australii i Nowej Zelandii (8,5 µg/m3), Oceanii (12,6 µg/m3) oraz Ameryce Południowej (15,6 µg/m3).

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krzem, który jest standardowo wykorzystywany do wytwarzania ogniw słonecznych, jest drogi w pozyskiwaniu i oczyszczaniu. Alternatywną dla niego mogą być znacznie tańsze perowskity, a budowane z nich ogniwa słoneczne już teraz są bardziej wydajne od tych krzemowych. Naukowcy z University of Rochester poinformowali, że ich wydajność można zwiększyć ponad dwukrotnie.
      Grupa profesora Chunleia Guo zauważyła, że jeśli w ogniwach perowskitowych w roli substratu użyjemy metalu lub naprzemiennie ułożonych warstw metalu i dielektryka – zamiast standardowo używanego szkła – to wydajność takiego ogniwa wzrośnie aż o 250%. To olbrzymi postęp, gdyż już w tej chwili perowskitowe ogniwa słoneczne charakteryzują się wydajnością przekraczającą 30%.
      Nikt dotychczas nie zaobserwował takiego zjawiska. Gdy pod perowskit wsadziliśmy metal nagle doszło do gwałtownej zmiany interakcji elektronów w materiale. Wykorzystaliśmy więc metodę fizyczną do wywołania tej interakcji, mówi Guo. Kawałek metalu może tutaj wykonać tyle roboty, co złożone prace z dziedziny inżynierii chemicznej, cieszy się uczony.
      Aby ogniwa słoneczne działały, fotony ze Słońca muszą wzbudzić elektrony w materiale ogniwa fotowoltaicznego, które w wyniku tego opuszczą swoje dotychczasowe miejsca i wygenerują prąd. Idealnie byłoby, gdyby do budowy ogniw użyć materiału, w którym wzbudzone elektrony są bardzo słabo wciągane z powrotem na swoje miejsca. Zespół Guo wykazał, że w perowskitach takiej rekombinacji, powrotu wzbudzonych elektronów na miejsce, można uniknąć łącząc perowskit z metalem lub metamateriałem zbudowanym z naprzemiennych warstw srebra i tlenku aluminium. Wówczas, dzięki wielu zdumiewającym zjawiskom fizycznym ma miejsce znaczna redukcja liczby rekombinacji. Jak wyjaśnia Guo, warstwa metalu działa jak lustro tworzące odwrócone obrazy par dziura-elektron, zmniejszając prawdopodobieństwo rekombinacji elektronów z dziurami. Za pomocą prostego miernika zaobserwowano, że wydajność perowskitowego ogniwa zwiększyła się o 250%.
      Perowskity to niezwykle obiecująca grupa materiałów pod względem produkcji energii elektrycznej ze Słońca. Mają jednak poważną wadę. Ulegają szybkiej degradacji pod wpływem wysokiej temperatury i ich wydajność drastycznie spada. Jednak i na tym polu widoczny jest wyraźny postęp. Gdy rozpoczynano badania perowskitów pod kątem ich wykorzystania do pozyskiwania energii elektrycznej, perowskitowe ogniwa pracowały od kilku minut do kilku godzin. W ubiegłym roku w US National Renewable Energy Laboratory powstało perowskitowe ogniwo fotowoltaiczne, które po 2400 godzinach nieprzerwanej pracy w temperaturze 55 stopni Celsjusza zachowało 87% swojej pierwotnej sprawności. Czas pracy ogniw perowskitowych może już teraz sięgać wielu miesięcy. A ich wydajność właśnie zwiększono o 250%.
      Solar Energy Technologies Office, działające w ramach amerykańskiego Departamentu Energii, stawia sobie za cel opracowanie perowskitowego ogniwa, które będzie działało przez co najmniej 20, a idealnie ponad 30 lat.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z University of Chicago opracowali sposób na wytwarzanie materiału, który można produkować równie łatwo jak plastik, ale który przewodzi elektryczność tak dobrze, jak metale. Na łamach Nature uczeni opisali, w jaki sposób stworzyć dobrze przewodzący materiał, którego molekuły są nieuporządkowane. Jego istnienie przeczy temu, co wiemy o elektryczności.
      Nasze odkrycie pozwala na stworzenie nowej klasy materiałów, które przewodzą elektryczność, są łatwe w kształtowaniu i bardzo odporne na warunki zewnętrzne, mówi jeden z głównych autorów badań, profesor John Anderson. To sugeruje możliwość istnienia nowej grupy materiałów, niezwykle ważnej z technologicznego punktu widzenia, dodaje doktor Jiaze Xie.
      Materiały przewodzące są nam niezbędne w codziennym życiu. To dzięki nim funkcjonują urządzenia napędzane prądem elektrycznym. Najstarszą i największa grupą takich materiałów są metale, jak miedź czy złoto. Około 50 lat temu stworzono przewodniki organiczne, w których materiał wzbogacany jest o dodatkowe atomy. Takie przewodniki są bardziej elastyczne i łatwiej jest je przetwarzać niż metale, jednak są mało stabilne i w niekorzystnych warunkach – przy zbyt wysokiej temperaturze czy wilgotności – mogą tracić swoje właściwości.
      I metale i przewodniki organiczne mają pewną cechę wspólną – są zbudowane z uporządkowanych molekuł. Dzięki temu elektrony mogą z łatwością się w nich przemieszczać. Naukowcy sądzili więc, że warunkiem efektywnego przewodnictwa jest uporządkowana struktura przewodnika.
      Jiaze Xie zaczął jakiś czas temu eksperymentować z wcześniej odkrytymi, jednak w dużej mierze pomijanymi, materiałami. Długie łańcuchy węgla i siarki poprzeplatał atomami niklu. Ku zdumieniu jego i jego kolegów okazało się, że taka nieuporządkowana struktura świetnie przewodzi prąd. Co więcej, okazała się bardzo stabilna. Podgrzewaliśmy nasz materiał, schładzaliśmy, wystawialiśmy na działanie powietrza i wilgoci, nawet zamoczyliśmy w kwasie i nic się nie stało, mówi Xie. Najbardziej jednak zdumiewający był fakt, że struktura materiału była nieuporządkowana. On nie powinien tak dobrze przewodzić prądu. Nie mamy dobrej teorii, która by to wyjaśniała, przyznaje profesor Anderson.
      Andreson i Xie poprosili o pomoc innych naukowców ze swojej uczelni, by wspólnie zrozumieć, dlaczego materiał tak dobrze przewodzi elektryczność. Obecnie naukowcy sądzą, że tworzy on warstwy. I pomimo, że poszczególne warstwy nie są uporządkowane, to tak długo, jak się ze sobą stykają, elektrony mogą pomiędzy nimi swobodnie przepływać.
      Jedną z olbrzymich zalet nowego materiału jest możliwość łatwego formowania. Metale zwykle trzeba stopić, by uzyskać odpowiedni kształt. To proces nie tylko energochłonny, ale i poważnie ograniczający ich zastosowanie, gdyż oznacza, że inne elementu budowanego układu czy urządzenia muszą wytrzymać wysokie temperatury podczas produkcji. Nowy materiał pozbawiony jest tej wady. Można go uzyskiwać w temperaturze pokojowej i używać tam, gdzie występują wysokie temperatury, środowisko kwasowe, zasadowe czy wysoka wilgotność. Dotychczas wszystkie tego typu zjawiska poważnie ograniczały zastosowanie nowoczesnych technologii.
      Badania nad nowym materiałem są finansowane przez Pentagon, Departament Energii oraz Narodową Fundację Nauki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od ponad 20 lat wiadomo, że lekarstwa, które zażywamy, w końcu trafiają do rzek. Tam mogą szkodzić ekosystemowi i przyczyniać się do wzrostu antybiotykooporności. Jednak dotychczas większość badań nad zanieczyszczeniami lekami było wykonywanych w Europie, Ameryce Północnej i Chinach.
      Ponadto obejmowały one bardzo niewielki zestaw środków chemicznych. Jakby tego było mało, ich autorzy posługiwali się różnymi metodami pobierania i analizy próbek, przez co trudno było porównywać różne badania. Brak było szerszego obrazu zanieczyszczeń cieków wodnych przez lekarstwa zażywane przez ludzi.
      W PNAS (Proceedings of the National Academy of Sciences USA) ukazał się właśnie artykuł, który opisuje wyniki szeroko zakrojonych badań nad zanieczyszczeniem rzek przez lekarstwa. Wzięło w nich udział 127 naukowców, którzy przeanalizowali wodę z 258 rzek ze 104 krajów pod kątem występowania w nich 61 różnych środków chemicznych. W ten sposób powstał farmaceutyczny odcisk palca pół miliarda ludzi ze wszystkich kontynentów, mówi główny autor badań, John L. Wilkinson z University of York.
      Okazuje się, że największa koncentracja aktywnych składników farmaceutycznych (API) występuje w rzekach Afryki subsaharyjskiej, południa Azji oraz Ameryki Południowej. Najbardziej zanieczyszczone miejsca znajdowały się w krajach o niskich i średnich dochodach i były powiązane z obszarami o słabej infrastrukturze oczyszczania wody i odpadów oraz produkcją farmaceutyczną. Najczęściej wykrywanym API były karbamazepina, metformina i kofeina, które wykryliśmy w ponad połowie monitorowanych miejsc. w 25,7% miejsc stężenie co najmniej jednego API było wyższa niż uznawane dla bezpieczne dla organizmów wodnych lub też przekraczały poziom, poza którym może pojawiać się antybiotykooporność. Z naszych badań wynika zatem, że zanieczyszczenie rzek lekarstwami stanowi globalne zagrożenie dla ludzkiego zdrowia oraz środowiska naturalnego, czytamy na łamach PNAS.
      API trafiają do środowiska w trakcie produkcji leków, wskutek ich zażywania oraz podczas wyrzucania lekarstw niewykorzystanych i ich opakowań.
      Z wyjątkiem Islandii (gdzie próbki pobrano z 17 miejsc) oraz rzeki w pobliżu wsi Indian Yanomami w Wenezueli (3 miejsca pobierania próbek) w każdym innym miejscu na świecie w wodzie wykryto co najmniej 1 API. Największe średnie stężenie API zaobserwowano w Lahore w Pakistanie, gdzie wynosiło ono 70,8 µg/L. Równie zła sytuacja panuje w boliwijskim LA Paz (68,9 µg/L) i Addis Abebie (51,3 µg/L) w Etiopii. Najbardziej zanieczyszczone farmaceutykami miejsce znajdowało się na Rio Seke (La Paz, Boliwia), gdzie stężenie API sięgnęło 297 µg/L. Tak wysoki poziom zanieczyszczeń powiązano z odprowadzaniem do rzeki nieoczyszczonych ścieków oraz wyrzucaniem śmieci na jej brzegach.
      Najwięcej wysoko zanieczyszczonych próbek pobrano w Afryce i Azji. W Ameryce Północnej najbardziej zanieczyszczone próbki pochodziły z San Jose (średnio 25,8 µg/L, maksimum 63,1 µg/L) w Kostaryce. W Europie największe stężenie API (średnio 17,1 µg/L, maksimum 59,5 µg/L) zidentyfikowano w cieku wodnym w Madrycie. Natomiast w całej Oceanii najbardziej zanieczyszczony był ciek wodny w australijskiej Adelajdzie, gdzie średnie stężenie API wynosiło 0,577 µg/L, a stężenie maksymalne to 0,75 µg/L.
      W Polsce próbki pobrano w 6 miejscach w Suwałkach. Stwierdzono, że średnie stężenie API wynosi 0,35 µg/L.
      Dużą koncentrację API w rzekach i innych ciekach wodnych powiązano z produkcją farmaceutyków, odprowadzaniem źle oczyszczonych lub nieoczyszczonych ścieków, wyrzucaniem śmieci do rzek i w ich pobliże oraz ze szczególnie suchym klimatem. Najmniejsza koncentracja występowała zaś tam, gdzie ludzie mieli ograniczony wpływ na rzeki, używanych było niewiele współczesnych leków oraz tam, gdzie znajdowały się zaawansowane systemy oczyszczania lub rzeki niosły dużo wody.
      Badacze znaleźli 53 z poszukiwanych 61 API. Aż 4 zidentyfikowano w Antarktyce, 21 w Oceanii, 35 w Ameryce Południowej, 39 w Ameryce Północnej, 41 w Afryce i 48 w Azji. A 4 środki znaleziono na wszystkich kontynentach. Te, które zidentyfikowano na wszystkich kontynentach to środki związane ze stylem życia lub lekami bez recepty. Były to kofeina, nikotyna, paracetamol i kotynina. Kolejnych 14 API znaleziono wszędzie z wyjątkiem Antarktyki. Autorzy badań sądzą, że nigdzie nie znaleźli 8 z poszukiwanych API, gdyż niektóre z nich są bardzo niestabilne w środowisku wodnym, a jeszcze inne bardzo szybko przenikają z wody do osadów dennych.
      Musimy pamiętać, że aktywne składniki farmaceutyczne (API) są tworzone pod kątem wywierania konkretnego wpływu na nasz organizm. Dlatego ich niekontrolowany wpływ na środowisko i na nasze organizmy musi budzić obawy. wiemy, że API szkodzą organizmom wodnym i działają selektywnie na mikroorganizmy, mogąc przyczyniać się do rozpowszechniania się antybiotykooporności.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej stoją na czele międzynarodowej grupy badawczej prowadzącej wraz z partnerami biznesowymi projekt, którego celem jest sprawdzenie możliwości pozyskiwania cennych metali z wód podziemnych. Uczeni zbadają solanki  znajdujące się na terenie Polski, Czech, Słowacji, Węgier, Hiszpanii i Portugalii. Projektem BrineRIS kieruje dr Magdalena Worsa-Kozak z Wydziału Geoinżynierii, Górnictwa i Geologii PWr.
      Uczeni przeprowadzą analizy 12 wybranych źródeł i będą badali możliwość pozyskiwania z nich np. litu jedną z trzech rozwijanych właśnie technologii. Lit jest tutaj szczególnie pożądanym metalem. Wykorzystuje się go m.in. do budowy akumulatorów samochodowych. W związku z rosnącą popularnością samochodów elektrycznych popyt na lit może do końca dekady wzrosnąć nawet pięciokrotnie.
      Obecnie znaczną część litu pozyskuje się ze zbiorników solankowych na wysoko położonych obszarach Boliwii, Argentyny czy Chile. Najpierw bogate w lit wody są pompowane do stawów ewaporacyjnych, tam przez kilka miesięcy woda odparowuje, następnie z osadu pozyskiwany jest węglan litu, który poddaje się kolejnym obróbkom. Jednak taki sposób pozyskiwania litu ma negatywny wpływ na środowisko naturalne. Stawy zajmują olbrzymie powierzchnie, prowadzi to też do obniżenia poziomu wód gruntowych z powodu wypompowywania solanek. Kolejnym problemem są środki chemiczne używane w tej metodzie.
      Dlatego też w wielu miejscach prowadzi się prace nad technologiami bezpośredniej ekstrakcji litu. Są one niezależne od pogody, ale problem stanowi cena energii elektrycznej używanej w tej metodzie.
      Rozwiązaniem może być sięgnięcie do solanek geotermalnych. Można by z nich uzyskiwać lit, a cały proces byłby zasilany energią pozyskiwaną z samej solanki. W ramach projektu BrineRIS analizowane będą dane dotyczące występowania solanek oraz ich składu, ze szczególnym uwzględnieniem litu, strontu i baru. Obecnie te dane są bardzo rozproszone. Nie ma jednego miejsca, w którym zainteresowany przedsiębiorca mógłby przejrzeć przekrojowo takie informacje. Do tego część np. badań składu chemicznego solanek została przeprowadzona w ramach projektów naukowych czy inwestycyjnych związanych z innymi tematami i te dane nie zostały nigdy przeanalizowane pod kątem odzysku pierwiastków, ani w jakiejkolwiek formie upublicznione, mówi dr Worsa-Kozak.
      Ponadto przeprowadzona zostanie analiza solanek pod kątem pozyskania z nich litu za pomocą jednej z trzech technologii. Elektrolitycznymi metodami pozyskiwania tego pierwiastka zajmą się naukowcy z Uniwersytetu Gandawskiego, technologią adsorbcyjną specjaliści z fińskiej służby GTK, a ekstrakcją rozpuszczalnikową GTK we współpracy z Politechniką Wrocławską.
      Będziemy także analizować te solanki, które mają niższe temperatury, czyli np. około 40 czy 60 stopni C. i w związku z tym nie nadają się do produkcji energii elektrycznej. Mogą natomiast być odpowiednie do produkcji ciepła i dlatego naukowcy z TU Freiberg będą klasyfikować te solanki, z których ciepło można byłoby wykorzystywać do poprawy samego procesu technologicznego, np. do podgrzania chłodniejszej wody i poprawy efektywności testowanych technologii, zmniejszając ich koszty, dodaje kierująca projektem.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...