Sign in to follow this
Followers
0

O nadwadze decyduje nie to, ile jemy, ale to, co jemy
By
KopalniaWiedzy.pl, in Zdrowie i uroda
-
Similar Content
-
By KopalniaWiedzy.pl
Kobiety, które mieszkają w miejscach zachęcających do spacerów, są mniej narażone na nowotwory związane z otyłością, a szczególnie na postmenopauzalne nowotwory piersi, nowotwory jajników, endometrium oraz szpiczaka mnogiego, informują naukowcy z Columbia University Mailman School of Public Health i NYU Grossman School of Medicine. Otyłość powiązana jest z 13 rodzajami nowotworów, a aktywność fizyczna zmniejsza ryzyko wystąpienia niektórych z nich. Dotychczas jednak brakowało badań nad architekturą miejsca zamieszkania, a występowaniem nowotworów powiązanych z otyłością.
Amerykańscy naukowcy przez 24 lata przyglądali się 14 274 kobietom w wieku 34–65 lat, które w latach 1985–1991 wzięły udział w programie badań mammograficznych w Nowym Jorku. Naukowcy przeanalizowali okolicę, w jakiej każda z nich mieszkała, skupiając się przede wszystkim na tym, na ile zachęcała ona do spacerowania czy załatwiania codziennych rzeczy na piechotę. Ważna więc była nie tylko infrastruktura drogowa czy otoczenie przyrodnicze, ale też dostępność sklepów, kawiarni czy różnego typu usług w takiej odległości, by mieszkańcy chcieli przemieszczać się na własnych nogach. Okazało się, że tam, gdzie sąsiedztwo bardziej sprzyjało spacerom, panie rzadziej zapadały na nowotwory.
Do końca roku 2016 na nowotwór powiązany z otyłością zapadło 18% badanych pań. Z tego 53% zachorowało na postmenopauzalny nowotwór piersi, 14% na raka jelita grubego, a 12% na nowotwór endometrium. To unikatowe długoterminowe badania, które pozwoliły nam określić związek pomiędzy otoczeniem sprzyjającym spacerom, a nowotworami, mówi doktor Yu Chen z NYU Grossman School of Medicine. Naukowcy zauważyli, że kobiety mieszkające w otoczeniu, które sprzyja spacerom, były narażone na o 26% mniejsze ryzyko rozwoju nowotworu powiązanego z otyłością. To kolejny dowód na to, jak architektura miejska wpływa na zdrowie coraz bardziej starzejących się społeczeństw, stwierdza profesor epidemiologii Andrew Rundle z Columbia Mailman School.
Naukowcy zauważają, że zachęcanie ludzi do większej aktywności fizycznej jest często mało skuteczne. Wiele osób postanawia więcej się ruszać, jednak ich zapał trwa bardzo krótko i szybko wracają do starych zwyczajów. Zupełnie inaczej jest w sytuacji, gdy otoczenie sprzyja ruchowi. Wówczas bez zachęt, w sposób naturalny, wolą się przejść do sklepu, fryzjera czy kina, niż jechać samochodem, stać w korkach oraz szukać miejsca do zaparkowania.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jedną z cech współczesnego „śmieciowego jedzenia” jest fakt, że trudno mu się oprzeć i przestać jeść. Produkty tego typu zawierają starannie dobraną ilość soli, słodyczy i tłuszczu. Naukowcy ukuli na ich określenie termin „hipersmaczne”. Uczeni z University of Kansas przeprowadzili badania, z których wynika, że te marki żywności, które należały do przemysłu tytoniowego – a w latach 80. intensywnie inwestował on w amerykański przemysł spożywcy – celowo rozpowszechniały na rynku „hipersmaczne” produkty.
Hipersmacznej żywności trudno się oprzeć. Zawiera ona składniki powiązane ze smakiem, takie jak tłuszcze, cukry, sód lub inne węglowodory, które są dobrane w odpowiednich proporcjach, mówi główna autorka badań, profesor psychologii Terra Fazzino, która specjalizuje się w badaniach nad uzależnieniami. Już wcześniej wykazała ona, że 68% żywności oferowanej na rynku USA jest „hipersmaczna”. To takie połączenie składników, by zwiększyć przyjemność z jedzenia i by trudno było przestać jeść. Odczucia związane ze spożywaniem takich pokarmów są inne niż wówczas, gdy jemy coś zawierającego dużo tłuszczu, ale nie zawierającego cukru, soli czy innych rafinowanych węglowodanów.
Trudno jest obecnie znaleźć pokarmy, które nie są „hipersmaczne”. Jestesmy otoczeni żywnością, a większość z niej jest „hipersmaczna”. Z kolei pokarmy, które takie nie są – jak świeże owoce czy warzywa – są mniej dostępne i droższe. Tak naprawdę nie mamy zbyt dużego wyboru jeśli chcielibyśmy uniknąć żywności „hipersmacznej”, dodaje Fazzino.
Żywność „hipersmaczna” zawiera taką kombinację składników, która zapewnia wrażenia, jakich nie uzyskamy, spożywając te składniki osobno. Problem w tym, że takie kombinacje składników nie występują w naturze, więc nasze organizmy nie są na nie przygotowanie. Składniki te bez przerwy pobudzają centra nagrody w mózgu i zakłócają sygnały świadczące o najedzeniu. Dlatego tak trudno im się oprzeć, wyjaśnia uczona. Skutki takiego postępowania są widoczne w postaci epidemii otyłości. Żywność można tak przygotować, by człowiek zjadł więcej, niż planował. To nie do końca jest kwestia świadomego wyboru i uważania na to, co się je. Ta żywność oszukuje nasz organizm i powoduje, że jemy więcej niż chcemy.
Teraz uczona wraz ze swoim zespołem postanowiła odpowiedzieć na pytanie, w jaki sposób przemysł tytoniowy promował i rozpowszechniał żywność „hipersmaczną”. Naukowcy wykorzystali publicznie dostępne informacje dotyczące struktur własnościowych w przemyśle spożywczym oraz dane Departamentu Rolnictwa dotyczące składu żywności. W ten sposób przyjrzeli się, jak wiele żywności oferowanej przez przemysł tytoniowy zostało przygotowane tak, by było „hipersmaczne”.
Okazało się, że w latach 1988–2001 żywność produkowana przez firmy należące do przemysłu tytoniowego była klasyfikowana jako hipersmaczna z 29% większym prawdopodobieństwem z powodu odpowiedniego stosunku tłuszczu i sodu oraz z 80% większym prawdopodobieństwem z powodu stosunku węglowodanów i sodu niż żywność produkowana przez firmy nienależące do przemysłu tytoniowego.
Na podstawie naszych danych nie możemy określić intencji przemysłu tytoniowego. Jednak możemy stwierdzić, że przemysł tytoniowy konsekwentnie rozwijał „hipersmaczną” żywność w czasach, gdy był wiodąca siłą na rynku spożywczym. Było to działanie celowe i inne od działań marek, które nie należały do przemysłu tytoniowego, stwierdza Fazzino.
Inspiracją do przeprowadzonych przez niż badań były wcześniejsze prace uczonych z Uniwersytetu Kalifornijskiego w San Francisco. Przed 4 laty wykazali oni, że firmy RJ Reynolds i Philip Morris – wiodący producenci papierosów – wykorzystywały podczas przygotowywania i promowania dzieciom słodzonych napojów gazowanych takie same strategie, których wcześniej używały przy wyrobach tytoniowych. Używano nawet tych samych kolorów i dodatków, które zostały opracowane na potrzeby produkcji i marketingu papierosów.
Koncerny tytoniowe wycofały się z amerykańskiego rynku żywności w pierwszych latach XXI wieku. Jednak ich dziedzictwo przetrwało. Wiele stworzonych przez nie linii produktów oraz technik marketingowych nakierowanych na dzieci jest wciąż używanych. W roku 2018, jak zauważa Fazzino, wciąż ponad 57% żywności jest klasyfikowana jako „hipersmaczna” ze względu na stosunek tłuszczu i sodu, a ponad 17% ze względu na stosunek węglowodanów i sodu. To oznacza, że – niezależnie od wcześniejszej struktury własnościowej firm spożywczych – żywność „hipersmaczna” jest bardzo ważnym składnikiem amerykańskiej diety.
« powrót do artykułu -
By KopalniaWiedzy.pl
Inżynierowie z University of Massachusetts Amherst wykazali, że z niemal każdego materiału można stworzyć urządzenie pobierające energię elektryczną z pary wodnej zawartej w powietrzu. Wystarczy utworzyć w tym materiale nanopory o średnicy mniejszej niż 100 nanometrów. To niezwykle ekscytujące. Otworzyliśmy drogę do wytwarzania czystej energii z powietrza, cieszy się główny autor artykułu opisującego badania, świeżo upieczony inżynier Xiaomeng Liu.
Powietrze zawiera olbrzymie ilości energii elektrycznej. Weźmy na przykład chmurę, która jest niczym innym jak masą kropelek wody. Każda z tych kropelek zawiera ładunek elektryczny i w odpowiednich warunkach dochodzi do wyładowania. Nie potrafimy jednak pozyskiwać energii z tych wyładowań. Natomiast my stworzyliśmy niewielką chmurę, która wytwarza energię w sposób przewidywalny, możemy więc ją zbierać, dodaje profesor Jun Yao.
U podstaw najnowszego odkrycia znajduje się praca Yao i Dereka Levleya, którzy w 2020 roku wykazali, że możliwe jest nieprzerwane pozyskiwanie energii elektrycznej z powietrza za pomocą specjalnego materiału złożonego z nanokabli zbudowanych z białek bakterii Geobacter sulfureducens. Po tym, jak dokonaliśmy tego odkrycia zauważyliśmy, że tak naprawdę zdolność pozyskiwania energii z powietrza jest wbudowana w każdy materiał, który posiada pewne właściwości, mówi Yao. Wystarczy, by materiał ten zawierał pory o średnicy mniejszej niż 100 nanometrów, czyli ok. 1000-krotnie mniejszej niż średnica ludzkiego włosa.
Dzieje się tak dzięki parametrowi znanemu jako średnia droga swobodna. Jest to średnia odległość, jaką przebywa cząsteczka przed zderzeniem z inną cząsteczką. W tym wypadku mowa o cząsteczce wody w powietrzu. Średnia droga swobodna wynosi dla niej około 100 nanometrów. Yao i jego zespół zdali sobie sprawę, że mogą wykorzystać ten fakt do pozyskiwania energii elektrycznej. Jeśli ich urządzenie będzie składało się z bardzo cienkiej warstwy dowolnego materiału pełnego porów o średnicy mniejszej niż 100 nanometrów, wówczas molekuły wody będą wędrowały z górnej do dolnej części takiego urządzenia. Po drodze będą uderzały w krawędzie porów. Górna część urządzenia będzie bombardowana większą liczbą cząstek wody, niż dolna. Pojawi się w ten sposób nierównowaga ładunków jak w chmurze, której górna część jest bardziej naładowana niż dolna. W ten sposób powstanie bateria, która będzie działała dopóty, dopóki w powietrzu jest wilgoć.
To bardzo prosty pomysł, ale nikt wcześniej na niego nie wpadł. Otwiera to wiele nowych możliwości, mówi Yao. Jako, że tego typu urządzenie można zbudować praktycznie z każdego materiału, można je umieścić w różnych środowiskach. Możemy wybrazić sobie takie baterie z jednego materiału działające w środowisku wilgotnym, a z innego – w suchym. A że wilgoć w powietrzu jest zawsze, to urządzenie będzie działało przez całą dobę, niezależnie od pory dnia i roku.
Poza tym, jako że powietrze rozprzestrzenia się w trzech wymiarach, a my potrzebujemy bardzo cienkiego urządzenia, cały system bardzo łatwo można skalować, zwiększając jego wydajność i pozyskując nawet kilowaty mocy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Co łączy uniwersyteckie laboratorium w Chicago, gdzie naukowcy schładzają atomy do temperatury bliskiej zeru absolutnemu, uzyskując egzotyczny stan materii, z widocznymi przez okna drzewami uzyskującymi energię z fotosyntezy? Pozornie nic, ale najnowsze badania prowadzone na University of Chicago sugerują, że to, co robią naukowcy i to, co robią drzewa, może być bardziej podobne, niż nam się wydaje. Uczeni poinformowali właśnie na łamach PRX Energy, że znaleźli podobieństwa na poziomie atomowym pomiędzy fotosyntezą a kondensatami ekscytonowymi, niezwykłym stanem materii, który pozwala na bezstratne przesyłanie energii przez materiał. Odkrycie to może prowadzić do znacznego udoskonalenia elektroniki.
O ile nam wiadomo, nikt wcześniej nie zauważył tych podobieństw, a to, co odkryliśmy jest niezwykle ekscytujące, mówi współautor badań, profesor David Mazziotti.
Laboratorium Mazziottiego specjalizuje się w modelowaniu niezwykle złożonych interakcji pomiędzy atomami i molekułami. Przed trzema laty wykazano tam na przykład, że możliwe jest istnienie podwójnego kondensatu fermionów i ekscytonów, a spostrzeżenie to może zrewolucjonizować obrazowanie medyczne.
W ostatnim czasie Mazziotti oraz Anna Schouten i LeeAnn Sager-Smith modelowali zjawisko fotosyntezy na poziomie molekularnym. Gdy foton ze Słońca uderza w liść, dochodzi do wyładowania w specjalnej molekule. Energia tego wyładowania uwalnia elektron. Następnie elektron ten, wraz z dziurą, w której był, wędrują przez liść, przenosząc energię do miejsca, w którym rozpoczyna ona reakcję chemiczną wytwarzającą cukry odżywiające roślinę. Ta wędrująca para elektron-dziura zwana jest ekscytonem. Gdy naukowcy stworzyli model przemieszczania się wielu takich ekscytonów, zauważyli znany sobie wzorzec. Okazało się, że ekscytony w liściu czasem zachowują się bardzo podobnie do kondensatu Bosego-Einsteina, zwanego czasem piątym stanem materii.
W kondensacie Bosego-Einsteina cząstki zachowują się jak jedna cząstka. Dzięki temu w materiale takim energia może być przemieszczana bez strat. Zaobserwowanie takiego stanu materii podczas fotosyntezy to olbrzymie zaskoczenie, gdyż dotychczas kondensat Bosego-Einsteina obserwowano w bardzo niskich temperaturach. Naukowcy mówią, że to tak, jakbyśmy obserwowali kostki lodu tworzące się w filiżance gorącej kawy. Fotosynteza zachodzi w systemach w temperaturze pokojowej. Co więcej, struktura takich systemów jest nieuporządkowana. To warunki całkowicie odmienne od dziewiczych krystalicznych materiałów i niskich temperatur, w jakich uzyskuje się kondensaty elektronowe, mówi Schouten.
Zaobserwowane zjawisko nie obejmuje całego systemu, w którym dochodzi do fotosyntezy. Bardziej przypomina pojawiające się „wyspy” kondensatu. To jednak wystarczy, by zwiększyć transfer energii w systemie, wyjaśnia Sager-Smith. Z modelu wynika, że te „wyspy” podwajają wydajność całego procesu.
Profesor Mazziotti jest zadowolony z odkrycia i mówi, że otwiera ono nowe możliwości w dziedzinie syntezy materiałów na potrzeby technologii przyszłości. Idealny kondensat ekscytonowy to stan bardzo wrażliwy i wiele warunków musi być spełnionych, by zaistniał. Ale jeśli myślimy o praktycznych zastosowaniach, to nie potrzebujemy ideału. To ekscytujące obserwować zjawisko, które zwiększa wydajność transferu energii, ale zachodzi w temperaturze pokojowej, cieszy się uczony.
Naukowiec zauważa jeszcze jedną ważną rzecz. Zachodzące w procesie fotosyntezy interakcje pomiędzy atomami a molekułami są tak złożone, że z ich symulowaniem nie radzą sobie nawet najpotężniejsze superkomputery. Dlatego też podczas badania tych zjawisk dokonuje się uproszczeń. Najnowsze odkrycie pokazuje, że niektórych elementów upraszczać nie należy. Sądzimy, że lokalne korelacje elektronów muszą pozostać, byśmy mogli badać, jak działa natura.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed dziewięciu laty profesor Chris Greening i jego koledzy z Monash University zainteresowali się Mycobacterium smegmatis. Ta niezwykła bakteria może przetrwać wiele lat bez dostępu do organicznych źródeł pożywienia. Ku zdumieniu australijskich naukowców okazało się, że M. smegmatis pobiera wodór z atmosfery i wykorzystuje go produkcji energii. Teraz naukowcom udało się wyekstrahować enzym odpowiedzialny za cały proces. Mają nadzieję, że uda się go wykorzystać do produkcji tanich wydajnych ogniw paliwowych.
Enzym hydrogenazy, zwany Huc, ma tak wysokie powinowactwo do wodoru, że utlenia wodór atmosferyczny, mówi Greening. Huc jest niezwykle wydajny. W przeciwieństwie do innych znanych enzymów i katalizatorów korzysta z wodoru poniżej poziomu atmosferycznego, który stanowi 0,00005% powietrza, którym oddychamy – dodaje uczony. Od pewnego czasu wiedzieliśmy, że bakterie mogą wykorzystywać wodór atmosferyczny jako źródło energii. Jednak do teraz nie wiedzieliśmy, jak to robią – stwierdza.
Bliższe badania ujawniły, że Huc niezwykle wydajnie zmienia minimalne ilości H2 w prąd elektryczny, jednocześnie zaś jest niewrażliwy na oddziaływanie tlenu, który jest zwykle bardzo szkodliwy dla katalizatorów. Co więcej Huc jest odporny na wysokie temperatury. Nawet w temperaturze 80 stopni Celsjusza zachowuje swoje właściwości.
Bakterie wytwarzające Huc powszechnie występują w środowisku naturalnym. Odkryliśmy mechanizm, który pozwala bakteriom „żywić się powietrzem”. To niezwykle ważny proces, gdyż w ten sposób bakterie regulują poziom wodoru w atmosferze, pomagają utrzymać żyzność i zróżnicowanie gleb oraz oceanów, dodaje Greening.
Obecnie naukowcy pracują nad skalowaniem produkcji Huc. Chcą uzyskać większe ilości enzymu, by go lepiej przebadać, zrozumieć oraz opracować metody jego wykorzystania w procesach przemysłowych.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.