Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Naukowcy z Wrocławia udoskonalili laserowe pomiary odległości do Księżyca i satelitów

Recommended Posts

Najnowsze odkrycie naukowców z Uniwersytetu Przyrodniczego we Wrocławiu dowodzi, że dotychczasowe podejście do korygowania błędów wynikających z opóźnienia wiązki laserowej w atmosferze było wadliwe.  Dlatego proponują zupełnie nowe rozwiązanie, dzięki któremu obserwacje m.in.: kształtu Ziemi, topniejących lodowców oraz zmian poziomu wód oceanicznych będą dokładniejsze.

Pomiary laserowe opierają się na rejestracji różnicy czasu pomiędzy momentem wysłania impulsu laserowego na stacji a momentem powrotu tego samego impulsu po tym, gdy zostanie on odbity przez retroreflektor na satelicie lub Księżycu. Podczas pomiaru wiązka laserowa przechodzi dwukrotnie przez atmosferę ziemską, gdzie ulega ugięciu i opóźnieniu. Technologia detektorów laserowych pozwala na uzyskanie dokładności sub-milimerowych. Jednakże błędy wyznaczenia opóźnienia wiązki laserowej w atmosferze są wielokrotnie większe i stanowią główne źródło błędów w pomiarach laserowych do satelitów i Księżyca.

Na czym polega nowatorstwo rozwiązania Polaków?

Naukowcy z Instytutu Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu zaproponowali zupełnie nowe i innowacyjne podejście do korygowania opóźnienia wiązki laserowej w atmosferze. Podejście opiera się na uwzględnieniu grubości warstw atmosfery, przez które przechodzi laser. Do wyznaczenia wartości opóźnienia lasera wykorzystuje się odczyty meteorologiczne na stacji, do których wyliczana jest poprawka zależna od wysokości satelity nad horyzontem oraz od początkowej wartości opóźnienia wiązki lasera. W zaproponowanej metodzie analizuje się wszystkie pomierzone odległości na wszystkich stacjach i wylicza się dla każdej stacji poprawki, które są wprost proporcjonalne do opóźnienia wiązki lasera wynikającego z bezpośrednich pomiarów meteorologicznych i grubości atmosfery, którą musi pokonać laser. Poprawkę meteorologiczną wystarczy wyliczać raz na tydzień dla każdej stacji laserowej, dzięki czemu obliczenia pozostają stabilne nawet dla stacji z niewielką liczbą zarejestrowanych pomiarów laserowych do satelitów, a zarazem błąd wynikający z opóźnienia atmosferycznego zostaje prawie całkowicie usunięty. Metoda opracowana przez polski zespół pozwala na skuteczną eliminację od 75 do 90% błędów systematycznych w pomiarach laserowych wynikających z błędów opóźnienia atmosferycznego.

Sposób redukcji błędów meteorologicznych już niedługo ma szansę stać się standardem w laserowych pomiarach odległości do satelitów zwiększając dokładność nawet historycznych obserwacji Księżyca i satelitów, dzięki swojej prostocie i uniwersalności. Pozwala również na wykrycie błędnych odczytów z barometrów, które wcześniej negatywnie wpływały na satelitarne obserwacje Ziemi i Księżyca. Przełoży się to na poprawę przyszłych oraz wcześniejszych obserwacji kształtu Ziemi, tzw. geoidy, zmiany centrum masy Ziemi i obserwacji nieregularności w ruchu obrotowym, obserwacji topniejących lodowców oraz zmian poziomu wód oceanicznych.

Po co mierzymy odległości do satelitów?

Dzięki pomiarom laserowym do sztucznych i naturalnego satelity Ziemi dowiedzieliśmy się, ile wynosi stała grawitacji i masa Ziemi, o ile zmienia się spłaszczenie Ziemi w czasie, możemy korygować i wyliczać poprawki pozycji satelitów Galileo i GLONASS oraz zidentyfikowaliśmy, gdzie znajduje się środek masy Ziemi i jak przemieszcza się w czasie za sprawą topniejących lodowców na Grenlandii. Pomiary laserowe do Księżyca pozwoliły odkryć, że Księżyc oddala się od Ziemi o 3,8 cm rocznie. Ponadto pozwoliły na dokładny opis wahań w ruchu Księżyca, czyli tzw. libracji oraz zrewidować pochodzenie srebrnego globu.

Wrocławskie centrum obliczeniowe pomiarów laserowych

Grupa badawcza kierowana przez profesora Krzysztofa Sośnicę od wielu lat zajmuje się rozwojem technik laserowych i mikrofalowych w geodezji satelitarnej, a także wyznaczaniem precyzyjnych orbit sztucznych satelitów i parametrów opisujących Ziemię. W Instytucie Geodezji i Geoinformatyki Uniwersytetu Przyrodniczego we Wrocławiu od 2017 roku funkcjonuje Stowarzyszone Centrum Analiz Międzynarodowej Służby Pomiarów Laserowych do Sztucznych Satelitów i Księżyca (ang. International Laser Ranging Service, ILRS). Centrum odpowiada za monitorowanie jakości orbit satelitów Globalnych Nawigacyjnych Systemów Satelitarnych (GNSS): Galileo, GLONASS, BeiDou i QZSS z wykorzystaniem orbit opartych o obserwacje mikrofalowe i bezpośrednie pomiary laserowe. Jako jedyne na świecie, wrocławskie centrum specjalizuje się w kombinacji dwóch technik obserwacyjnych sztucznych satelitów: laserowej i mikrofalowej GNSS. 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Wszystko jest opisane w artykule z tego, co widzę, ale nie chce mi się teraz całości czytać :) Chodzi zapewne o prędkość światła w niejednorodnym ośrodku oraz generalnie propagację fali. Wiele wymienionych pomiarów zależy od dokładnej znajomości prędkości światła, a ta zależy od warunków optycznych w atmosferze, które wynikają wprost z warunków meteorologicznych :)

Share this post


Link to post
Share on other sites

droga Bakterio, że zapewne chodzi o v swiatła to oczywiste, ale - "Podejście opiera się na uwzględnieniu grubości warstw atmosfery, przez które przechodzi laser. Do wyznaczenia wartości opóźnienia lasera wykorzystuje się odczyty meteorologiczne na stacji, do których wyliczana jest poprawka zależna od wysokości satelity nad horyzontem oraz od początkowej wartości opóźnienia wiązki lasera." - jakie odczyty: temperatury, wilgotności czy temperatury?! Jak ja bym coś takiego napisał, to wielu by mnie za to skarciło. W końcu Koalnia Wiedzy to nie Pudelek

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Wrocławska firma SatRevolution umieści kolejne dwa satelity w przestrzeni okołoziemskiej. Sprzęt zostanie wystrzelony na pokładzie rakiety LauncherOne firmy Virgin Orbit.
      Jak przypomniano w komunikacie firmy przesłanym PAP, SatRevolution wysłała już na orbitę okołoziemską trzy własne nanosatelity – Światowid (w 2019 r.), KRAKsat (w 2019 r.) oraz AMICal Sat (w 2020 r.).
      Tym razem, w ramach rozbudowy konstelacji, spółka umieści na orbicie STORK-4 oraz STORK-5. Każdy z nich zawiera urządzenia optyczne pozwalające wykonać wielospektralne zdjęcia z rozdzielczością do 5 metrów. Pozyskany materiał będzie następnie przetwarzany w czasie rzeczywistym w rozwiązaniu Space Edge Zero. W kolejnych miesiącach konstelacja satelitów SatRevolution zostanie powiększona o następne cztery.
      Założeniem misji SatRevolution jest – jak wyjaśniono w komunikacie - dostarczanie użytecznych komercyjnie danych - stąd wybór urządzeń Space Edge Zero (SEZ), które umożliwiają przetwarzanie zebranych informacji jeszcze w satelicie, a nie dopiero na Ziemi. Dzięki temu SatRevolution będzie w stanie dostarczyć klientom przetworzone dane z obserwacji Ziemi, w sposób szybki i niedrogi. Obrazy satelitarne są pomocne przy podejmowaniu różnego typu i wagi decyzji przestrzennych. (…). Branże wykorzystujące zdjęcia satelitarne to między innymi obronność, rolnictwo, usługi komunalne czy finansowe – podała firma.
      Misja będzie realizowana w IV kwartale 2021 roku, a także przez cały następny rok. Teraz trwają procesy integrowania urządzeń Space Edge Zero z satelitami SatRevolution.
      To kolejna nasza inicjatywa podjęta we współpracy z partnerami technologicznymi. W ten sposób konsekwentnie realizujemy założenia strategiczne spółki, której jednym z głównych celów jest szybka komercjalizacja wyników badań oraz ekspansja na globalnym rynku. Pracujemy intensywnie, by w perspektywie kilku lat uzyskać status globalnego lidera pośród operatorów satelitów EO (Earth observation), co naturalnie przełoży się na wzrost przychodów spółki – podkreśla prezes SatRevolution i współzałożyciel spółki Grzegorz Zwoliński. Obrazy, które zostaną zebrane podczas trwania misji, będą miały zastosowanie w branży rolniczej oraz energetycznej w Polsce, Stanach Zjednoczonych a także w innych krajach.
      W tym roku SatRevolution planuje wystrzelić łącznie 14 satelitów na pokładach Virgin Orbit oraz SpaceX Falcon 9. To jeden z etapów realizacji planów firmy, zgodnie z którymi do 2026 roku na niskiej orbicie okołoziemskiej umieszczonych zostanie 1500 małych satelitów celem prowadzenia ciągłych obserwacji, a także analizy zobrazowań satelitarnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z International Centre for Radio Astronomy Research (ICRAR) i The University of Western Australia (UWA) we współpracy ze specjalistami z Francuskiego Narodowego Centrum Badań Kosmicznych (CNES) i laboratorium Systèmes de Référence Temps-Espace w Obserwatorium Paryskim ustanowili rekord świata dla najbardziej stabilnej transmisji światła laserowego przez atmosferę.
      Wykorzystano przy tym nowatorskie australijskie rozwiązania stabilizacji fazy w połączeniu z zaawansowanymi terminalami optycznymi. Dzięki temu przesłano światło lasera, które nie zostało zakłócone przez obecność atmosfery. "Jesteśmy w stanie korygować turbulencje w 3D, czyli w lewo-prawo, góra-dół oraz, co najważniejsze, wzdłuż trasy promienia. Nasza technologia działa tak, jakby atmosfera nie istniała. Dzięki temu możemy wysłać wysoce stabilny sygnały laserowe o wysokiej jakości", mówi główny autor badań, doktorant Benjamin Dix-Matthews z ICRAR i UWA.
      Wynikiem prac zespołu jest stworzenie najbardziej precyzyjnej metody pomiaru upływu czasu w dwóch różnych lokalizacjach.
      Doktor Sascha Schediwy w ICRAR-UWA mówi, że osiągnięcie to niesie ze sobą niezwykle ekscytujące możliwości. Jeśli będziemy mieli jeden z takich terminali optycznych na Ziemi, a drugi na satelicie krążącym wokół planety, to możemy zacząć badać podstawy fizyki. Będzie można z niedostępną wcześniej precyzją przetestować ogólną teorię względności Einsteina oraz sprawdzić, czy podstawowe stałe fizyczne podlegają zmianom w czasie.
      Jednak nowa technologia znajdzie też bardziej praktyczne zastosowania. Będzie można na przykład udoskonalić satelitarne pomiary zmiany poziomów wód czy odkrywać podziemne złoża minerałów, dodaje Schediwy. Nowy system posłuży też optycznej komunikacji. Nasza technologia może pozwolić na zwiększenie o wiele rzędów wielkości tempa komunikacji optycznej z satelitami. Przyszła generacja satelitów będzie mogła znacznie szybciej otrzymać potrzebne informacje z Ziemi, dodaje.
      Technologia, którą właśnie przetestowano, powstała na potrzeby projektu Square Kilometre Array – największego radioteleskopu na świecie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sensacja z wrocławskiego zoo. A właściwie dwie sensacje. Pierwsza to narodziny myszojelenia – kanczyla filipińskiego – zagrożonego wyginięciem endemita z Filipin. Sensacja druga to sam fakt sfilmowania narodzin. To nie udało się jeszcze nikomu na świecie.
      Wrocławski ogród zoologiczny słynie m.in. z sukcesów hodowlanych. Szczególną uwagę przywiązuje się tutaj do rozmnażania gatunków zagrożonych. Takich właśnie jak myszojelenie. Kanczyl filipiński to jeden z 10 gatunków myszojeleni i jeden z najbardziej zagrożonych. Przyszłość gatunku stoi pod znakiem zapytania, gdyż jego habitat jest niszczony pod plantacje palmy olejowej, z której produkuje się olej palmowy.
      W europejskich ogrodach zoologicznych mieszka 12 kanczyli filipińskich, w tym tylko 1 samiec – Johnny English z wrocławskiego zoo. Dlatego też wszyscy mają nadzieję, że urodzony właśnie 13. kanczyl jest samcem.
      Kanczyle prowadzą bardzo skryty tryb życia i jedyny raz udało się je sfilmować w naturze w 2016 r. Stąd tak niewiele o nich wiadomo. U nas w zoo również trudno je obserwować. Chowają się przed ludźmi w gąszczu traw lub zakamarkach pagody. Dlatego zainstalowaliśmy kamery, które podglądają zwierzęta w dzień i w nocy. Dzięki temu udało się nagrać nocny poród, który miał miejsce 10 listopada br. około godziny 2:24. Film już udostępniliśmy na branżowych kanałach i wywołał prawdziwą sensację, bo nikt wcześniej nie widział jak przebiegają narodziny - czy matka chowa się na czas porodu, czy rodzi na stojąco czy na leżąco, ile trwa poród, jak szybko kanczylek wstaje, kiedy zaczyna poszukiwać pokarmu u matki. Dzięki nagraniu na większość pytań znamy odpowiedź. Oczywiście trzeba je potwierdzić, przy kolejnych porodach, ale zrobiliśmy krok milowy dla przetrwania tego gatunku – mówi Radosław Ratajszczak, prezes wrocławskiego zoo.
      Kanczyle, kiedy poczują się dobrze, dość łatwo się mnożą i dość szybko dojrzewają płciowo. Niestety są bardzo wrażliwe na czynniki zewnętrzne, jak bakterie, grzyby czy pogodę, z którymi mamy do czynienia w Europie. Musimy bardzo o nie dbać i utrzymywać w określonych warunkach. Dlatego samice z Chester i Rotterdamu będą musiały poczekać, aż urodzi się u nas samiec i dorośnie. Wtedy pojedzie do jednej z tych grup. Wcześniej nie możemy ryzykować transportu samca czy samic w celach prokreacyjnych, bo to zbyt cenne zwierzęta. Mamy więc ogromną nadzieję, że nowo urodzony maluch okaże się właśnie samcem – dodaje Ratajszczak.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stetoskop na miarę XXI wieku, który bezprzewodowo prześle dźwięk, dostosuje charakterystykę dźwięku do potrzeb lekarza, usprawni proces diagnostyki nawet w trudnych warunkach pandemii. Taki wynalazek opracowali studenci Politechniki Wrocławskiej i Uniwersytetu Medycznego.
      Ich projekt otrzymał nagrodę specjalną w konkursie Forum Młodych Mistrzów podczas XXVI Forum Teleinformatyki. Zespół tworzą: Karol Chwastyniak, Wojciech Kania, Wojciech Korczyński z Wydziału Informatyki i Zarządzania oraz Filip Ciąder z Wydziału Mechanicznego, a także studenci Wydziału Lekarskiego Uniwersytetu Medycznego we Wrocławiu: Tomasz Skrzypczak i Jakub Michałowicz.
      Czuły, dokładny, inteligentny
      Zespół zaprojektował inteligentny stetoskop, który ma wspomagać lekarza w jego codziennej pracy. Kluczowym atrybutem rozwiązania jest cyfrowe przetwarzanie dźwięku. Dzięki redukcji niechcianego szumu otoczenia osłuchiwanie pacjenta staje się bardziej precyzyjne. Regulacja głośności umożliwia dostosowanie dźwięku do potrzeb lekarza. Zwiększa to komfort badania oraz pozwala na wzmocnienie najbardziej stłumionych szmerów – tłumaczą pomysłodawcy.
      Dzięki współpracującej ze stetoskopem aplikacji mobilnej można bezprzewodowo przesłać dźwięk wprost do słuchawek użytkownika. To jest szczególnie przydatne w czasie pandemii COVID-19, gdy lekarz musi osłuchać pacjenta w pełnym kombinezonie ochronnym z zachowaniem zasad bezpieczeństwa.
      Zastosowana przez studentów technologia pozwala na wyposażenie urządzenia w takie funkcje, jak możliwość konsultacji z innymi specjalistami, zapisywanie w pliku, eksportowanie, porównywanie z nagraniami wzorcowymi i przywoływanie nagranych dźwięków z historii pacjenta. Co więcej, zespół rozpoczął także wdrażanie do projektu metod sztucznej inteligencji. Pierwsze próby dały bardzo obiecujące wyniki.
      Dzięki wykorzystaniu uczenia maszynowego można dostrzec i sklasyfikować subtelne różnice szmerów wad zastawkowych serca – wyjaśniają studenci.
      Projekt z potencjałem  
      Od strony merytorycznej wsparcia udzielił studentom m.in. dr inż. Zbigniew Szpunar z Wydziału Informatyki i Zarządzania. To są kreatywni młodzi ludzie, którzy myślą nieszablonowo i bardzo konkretnie. W trudnym czasie izolacji, pracując zdalnie, realizują projekt, który zahacza o zagadnienia z kilku dziedzin: mechatroniki, medycyny i zaawansowanej informatyki. Musieli opanować wiele tematów z zakresu uczenia maszynowego, inżynierii oprogramowania, elektroniki, ale też kardiologii czy telemedycyny – mówi opiekun studentów z PWr. Tak naprawdę to moją istotną rolą jest nie przeszkadzać im w realizacji tego, co sobie zaplanowali – dodaje dr Szpunar.
      Potencjał studenckiego projektu dostrzegły już dwa wrocławskie szpitale, które wspomagają zespół we wszystkich etapach pracy. W ich działania zaangażowali się: prof. Marta Negrusz-Kawecka, dr n. med. Anna Goździk i dr n. med. Marta Obremska z Centrum Chorób Serca Uniwersyteckiego Szpitala Klinicznego, a także dr hab. Joanna Jaroch, lek. Alicja Sołtowska i lek. Jakub Mercik z Oddziału Kardiologii Szpitala Specjalistycznego im. T. Marciniaka. W projekcie współpracują również studenci Uniwersytetu Medycznego we Wrocławiu: Klaudia Błachnio, Julia Szymonik, Michał Kosior oraz Sebastian Tokarski – student Wydziału Elektroniki Politechniki Wrocławskiej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Australijscy teoretycy kwantowi wykazali, że możliwe jest przełamanie obowiązującej od 60 lat bariery ograniczającej koherencję światła laserowego. Koherencja, czyli spójność wiązki światła, może być w przypadku laserów opisana jako liczba fotonów wyemitowanych jeden po drugim w tej samej fazie. To element decydujący o przydatności lasera do różnych zastosowań.
      Obowiązujące poglądy na temat spójności światła laserowego zostały nakreślone w roku 1958 przez amerykańskich fizyków, Arthura Schawlowa i Charlesa Townesa. Obaj otrzymali zresztą Nagrodę Nobla za swoje prace nad laserami. Teoretycznie wykazali, ze koherencja wiązki lasera nie może być większa niż kwadrat liczby fotonów obecnych w laserze, mówi profesor Howard Wiseman z Griffith University. Stał on na czele grupy naukowej złożonej z Griffith University i Macquarie University.
      Poczynili jednak pewne założenia odnośnie ilości energii dostarczanej do lasera oraz sposobu, w jaki jest ona uwalniana, by uformować wiązkę. Ich założenia miały wówczas sens i wciąż są prawdziwe w odniesieniu do większości laserów. Jednak mechanika kwantowa nie potrzebuje takich założeń, dodaje Wiseman.
      W naszym artykule wykazaliśmy, że prawdziwa granica koherencji, nakładana przez mechanikę kwantową, to czwarta potęga liczby fotonów przechowywanych w laserze, dodaje profesor Dominic Berry.
      Naukowcy zapewniają, że taką koherencję można osiągnąć w praktyce. Przeprowadzili bowiem symulację numeryczną i stworzyli oparty na mechanice kwantowej model lasera, który może osiągnąć ten nowy teoretyczny poziom spójności wiązki. Wiązka taka, poza spójnością, jest identyczna z wiązką konwencjonalnego lasera.
      Trzeba będzie poczekać na pojawienie się takich laserów. Udowodniliśmy jednak, że używając nadprzewodników można będzie zbudować taki laser, którego granice będą wyznaczane przez zasady mechaniki kwantowej. Obecnie ta sama technologia jest wykorzystywana do budowy komputerów kwantowych. Nasz laser może właśnie w nich znaleźć zastosowanie, mówi doktorant Travis Baker.
      Profesor Wiseman dodaje zaś, że prace jego zespołu każą postawić interesujące pytanie o możliwość skonstruowania bardziej energooszczędnych laserów. To przyniosłoby duże korzyści. Mam nadzieję, że w przyszłości będziemy mogli zbadać tę kwestię.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...