Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Do dwóch razy sztuka. Perseverance pobrał próbki Marsa, które zostaną przywiezione na Ziemię

Recommended Posts

Łazik Perseverance pobrał pierwszą próbkę marsjańskiego gruntu. To rdzeń nieco grubszy od ołówka, który pobrano za pomocą wiertła. Został on przeniesiony do szczelnie zamykanego tytanowego pojemnika, w którym będzie czekał na transport na Ziemię. Jednym z zadań misji Mars 2020 jest pobranie około 35 próbek, które w ciągu dekady zostaną przywiezione na naszą planetę.

NASA i ESA (Europejska Agencja Kosmiczna) już planują Mars Sample Return, serię wypraw, które przywiozą próbki zebrane przez Perseverance. Będą to pierwsze w historii próbki przywiezione z innej planety na Ziemię. Tutaj zostaną szczegółowo zbadane przez naukowców.

To historyczny moment dla wydziału naukowego NASA. Tak, jak misje Apollo dowiodły naukowej wartości próbek przywożonych z Księżyca, tak w ramach programu Mars Sample Return uczynimy to z próbkami zbieranymi przez Perseverance. Sądzimy, że dostępne w ziemskich laboratoriach instrumenty naukowe najwyższej klasy przyniosą zaskakujące odkrycia i pozwolą odpowiedzieć na pytanie, czy na Marsie kiedykolwiek istniało życie, stwierdził Thomas Zurbuchen, dyrektor NASA ds. naukowych.

Pobieranie próbki rozpoczęto 1 września, kiedy to łazik rozpoczął wiercenie w skale nazwanej „Rochette”. Po zakończeniu wiercenia rdzeń został przeniesiony do tuby, a kamera Mastcam-Z wykonała zdjęcia jej wnętrza. Gdy dotarły one na Ziemię i kontrola misji potwierdziła, że próbki znajdują się w tubie, wysłano do łazika polecenie dokończenia całego procesu. Dzisiaj tuba o numerze seryjnym 266 została przeniesiona do wnętrza łazika, gdzie została zmierzona i sfotografowana. Następnie tuba została szczelnie zamknięta, Perseverance wykonał kolejne jej zdjęcie i przeniósł ją do magazynu w swoim wnętrzu.

Sampling and Caching System składa się z ponad 3000 części. Jest to najbardziej skomplikowany mechanizm, jaki kiedykolwiek został wysłany w przestrzeń kosmiczną. Jesteśmy niezwykle podekscytowani widząc, jak dobrze spisuje się on na Marsie i że pierwszy krok w kierunku dostarczenia próbek na Ziemię został wykonany, cieszy się Larry D. James, dyrektor w Jet Propulsion Laboratory.

Przypomnijmy, że miesiąc temu Perseverance próbował już pobrać rdzeń skały. Wówczas się to nie udało, a analiza danych wykazała, że skała, w której wiercono, była zbyt luźna, więc nie została pobrana.

Perseverance znajduje się obecnie w regionie nazwanym Artuby. To szeroka na 900 metrów granica pomiędzy dwiema jednostkami geologicznymi. Naukowcy sądzą, że zawiera ona najgłębsze i najstarsze z odsłoniętych warstw skał krateru Jezero. Pobranie pierwszej próbki z tego obszaru to moment przełomowy. Gdy próbki trafią na Ziemię, zdradzą nam one wiele szczegółów na temat pierwszych rozdziałów ewolucji Marsa. Niezależnie jednak od tego, jak intrygujący materiał trafił do tuby numer 266, musimy pamiętać, że nie opowie nam całej historii. W kraterze Jezero jest jeszcze wiele do zbadania, a my będziemy prowadzili naszą misję jeszcze przez wiele miesięcy i lat, stwierdził Ken Farley, jeden z naukowców pracujących przy misji 2020.

Podstawowy etap misji Perseverance zaplanowano na kilkaset marsjańskich dni. Taki dzień zwany jest sol. Zakończy się on, gdy Perseverance wróci do miejsca lądowania. W tym czasie łazik przejedzie od 2,5 do 5 kilometrów i pobierze próbki nawet z 8 miejsc. Następnie Perseverance uda się na północ, później skręci na zachód, w miejsce drugiego etapu swojej misji – delty rzeki, która wpadała niegdyś do jeziora w Jezero. Obszar ten może być bardzo bogaty w iły. Na Ziemi w takim materiale mogą być obecne mikroskopijne skamieniałe ślady, które mogą świadczyć o procesach biologicznych sprzed milionów lat. NASA liczy, że i na Marsie trafi na tego typu ślady.

Głównym zadaniem misji Mars 2020 jest prowadzenie badań astrobiologicznych, w tym poszukiwanie śladów dawnego życia. To pierwsza misja, w ramach której zbierane są i przechowywane próbki marsjańskiego gruntu. Ma ona przetrzeć drogę załogowej misji na Czerwoną Planetę.

Mars 2020 to część większego projektu o nazwie Moon to Mars. W jego ramach zaplanowano m.in. misję Artemis na Księżyc. Srebrny Glob będzie najprawdopodobniej przystankiem podczas załogowej eksploracji Marsa.


« powrót do artykułu
  • Like (+1) 1

Share this post


Link to post
Share on other sites

Pytanie o znających: to będą pierwsze próbki przywiezione na Ziemię? Czy do tej pory mieliśmy dostęp tylko do meteorytów? Coś mi świta, że ktoś, kiedyś, znalazł pod mikroskopem coś co przy dużych pokładach dobrej woli można było uznać za skamielinę. Dalej szukamy życia na Marsie?

Share this post


Link to post
Share on other sites

Dalej szukamy. Znając życie, skojarzenie przypadkowe, będziemy szukać wiele dekad :) Nie mamy na Ziemi żadnych próbek z Marsa, z wyjątkiem meteorytów. Ale Chińczycy dostarczyli niedawno próbki z Księżyca, więc to tylko kwestia czasu. Wiara czyni cuda, ale to zdaje się było prawdopodobnie pochodzenia niebiologicznego. Jedną z Misji Perseverance jest zabezpieczyć próbki w sterylnych fiolkach, zanim planeta zostanie bezpowrotnie skażona przez biomasę z Ziemi :) (pomijając fakt, że bardzo trudno wysterylizować całkowicie pojazd)

Obecnie są dowody tylko na to, że na Marsie była ciekła woda, która pozostawiła geologiczne ślady na powierzchni.
https://news.brown.edu/articles/2009/03/mars

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Jeszcze tak mi się przypomniało. W meteorytach z Marsa mogą być zamknięte bąbelki gazu atmosferycznego, więc to jest jeden ze sposobów na potwierdzenie pochodzenia. W meteorytach pochodzenia księżycowego, można natomiast znaleźć takie same proporcje izotopów jak w skałach na Ziemi. Ciekawe zagadnienie, jak udowodnić, że skała jest z Marsa, kiedy nigdy nie mieliśmy w rękach skały z Marsa :)

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Japończycy 2-krotnie dostarczyli próbki z asteroid (misje Hayabusa i Hayabusa2), obecnie amerykański OSIRIS-Rex wiezie próbki z asteroidy Bennu, które mają trafić na Ziemię w 2023. Te zebrane przez Perseverance mają być pierwszymi próbkami z innej planety.

Share this post


Link to post
Share on other sites

Interesujące są misje do asteroid i dalekich obiektów jak Ultima Thule. Kiedyś się interesowałem głównie odległymi obiektami, jak gwiazdy, mgławice, galaktyki, kwazary, i tak dalej. Ale do tej pory zbadaliśmy ułamek procenta Układu Słonecznego (wolumetrycznie), bo wycinek, jaki zajmują planety i ich okolice jest mikroskopijny. Jak się zrobi rzut z góry na US tak, żeby było widać wewnętrzną granicę Obłoku Oorta, to ledwo widać orbity gazowych olbrzymów. Widać głownie Neptuna, a wewnętrzne planety są skupione w jednym punkcie.

Share this post


Link to post
Share on other sites

Zobaczymy kto bedzie pierwszy. Japończycy (JAXA) dość mocno pracują nad misją  Martian Moon eXploration (MMX), mającą za zadanie sprowadzenie próbek z Fobosa. Planowany powrót próbek na 2029 r. Jedna z najnowszych teoii głosi, że Fobos powstał w wyniku zderzenia Marsa z n/n obiektem w dalekiej przeszłości. Także próbki z Fobosa byłyby próbkami prehistorycznego Marsa. Misja ogólnie jest ciekawa:

Takie coś ma jeździć po fobosie:

Łazik powstaje w kooperacji francusko-niemieckiej. Tutaj więcej o nim:

https://www.spacedaily.com/reports/First_tests_for_landing_the_Martian_Moons_eXploration_Rover_999.html

Ponadto Japończycy opracowują kamerę 8K do filmowania Marsa i otoczenia (widok będzie spektakularny) i chcą to przesyłać w czasie rzeczywistym. 

Więcej informacji o misji:

https://www.planetary.org/space-missions/mmx

Powstaje ciekawa specjalizacja, Japończycy wyraźnie zaintresowani są małym obiektami kosmicznymi. Fajnie byłoby jeszcze   gdyby Rosjanie wzięli w garść swój sektor kosmiczny i powrócili do tego co szło im dobrze - czyli eksploracji Wenus.

 

 

 

 

Edited by venator

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Próbki pobrane z asteroidy Ryugu przez japońską misję Hayabusa 2 zawierają różne związki organiczne, w tym uracyl, wchodzący w skład RNA, poinformował międzynarodowy zespół naukowy, który analizuje zebrany materiał. Uczeni znaleźli też kwas nikotynowy (niacynę), czyli witaminę B3. Odkrycie dowodzi, że ważne elementy tworzące organizmy żywe powstają w przestrzeni kosmicznej i mogły zostać dostarczone na Ziemię przez meteoryty.
      Już wcześniej na niektórych bogatych w węgiel meteorytach znajdowano zasady azotowe nukleozydów i witaminy. Zawsze jednak pozostawała możliwość, że materiał został zanieczyszczony, gdyż doszło do jego interakcji ze środowiskiem ziemskim. Jednak pojazd Hayabusa 2 pobrał próbki bezpośrednio z asteroidy Ryugu i dostarczył je na Ziemię w zapieczętowanych kapsułach, więc możemy wykluczyć zanieczyszczenie, powiedział profesor Yasuhiro Oba z Hokkaido University.
      Naukowcy zanurzyli próbki asteroidy w gorącej wodzie, a następnie wykorzystali techniki chromatografii cieczy w połączeniu ze spektrometrią mas. W ten sposób wykryli uracyl, kwas nikotynowy i inne związki organiczne zawierające azot. Uracyl występował w stężeniu od 6 do 32 części na miliard (ppb), a witamina B3 w stężeniu 49–99 ppb. Znaleźliśmy tez inne molekuły biologiczne, w tym aminokwasy, aminy i kwasy karboksylowe, które występują w białkach i procesach metabolicznych, dodaje profesor Oba. Znalezione związki są podobne, ale nie identyczne, do tych, jakie wcześniej znajdowano na meteorytach.
      Badacze sądzą, że zawierające azot związki mogły, przynajmniej częściowo, powstać z prostszych molekuł, jak amoniak, formaldehyd czy cyjanowodór. Co prawda nie znaleziono ich na Ryugu, ale wiadomo, że są obecne w lodzie komet, a Ryugu mógł być w przeszłości częścią komety lub obiektu, który przebywał w niskich temperaturach.
      Odkrycie uracylu na Ryugu wzmacnia teorie mówiące o pochodzeniu zasad azotowych nukleotydów na Ziemi. W bieżącym roku sonda OSIRIS-REx NASA dostarczy próbki z asteroidy Bennu i będzie można przeprowadzić badania porównawcze, które dostarczą nowych danych do rozwoju tych teorii, dodaje Oba.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance rozpoczął tworzenie na Marsie zapasowego magazynu próbek. W miejscu zwanym Three Forks złożona została tytanowa tuba z próbkami marsjańskich skał. W ciągu najbliższych 2 miesięcy łazik pozostawi tam w sumie 10 pojemników, tworząc pierwszy w historii skład próbek na innej planecie.
      Za 10 lat próbki mają trafić na Ziemię w ramach misji Mars Sample Return. Plan ich przywiezienia zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas śmigłowce zabiorą próbki ze składu zapasowego i dostarczą je do pojazdu. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który zawiezie je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przetransportuje próbki na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      Obecnie Perseverance ma na pokładzie 17 pojemników z próbkami, w tym 1 z próbką atmosfery. Pierwszy pojemnik złożony w Three Forks zawiera skały pobrane 31 stycznia 2022 roku na obszarze South Séítah w Kraterze Jezero.
      Cały proces składowania próbki trwał godzinę. Po tym, gdy pojemnik wypadł spod podwozia łazika, inżynierowie musieli sprawdzić, czy nie znajdzie się pod kołami Perseverance, gdy ten będzie odjeżdżał, ani czy nie ustawił się pionowo. Pojemniki na jednym końcu są płaskie, co ma ułatwić ich przyszłe zebranie. Jednak przez to istnieje ryzyko, że ustawią się pionowo. Podczas testów naziemnych działo się tak w 5% przypadków.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dnia 20 lipca 1976 roku lądownik Viking 1 stał się pierwszym wysłanym przez człowieka pojazdem, który z powodzeniem wylądował i podjął pracę na Marsie. Na przysłanych przez niego zdjęciach naukowcy zobaczyli nie to, czego się spodziewali. Zamiast śladów wielkiej powodzi ujrzeli zagadkowy, pokryty głazami krajobraz. Teraz naukowcy z Planetary Science Institute dowodzą, że Viking 1 wylądował na krawędzi pola osadów powstałego w wyniku gigantycznego tsunami.
      Lądownik miał szukać śladów życia na Marsie, więc inżynierowie i naukowcy wykonali żmudną pracę wybrania miejsca lądowania na podstawie najwcześniejszych dostępnych zdjęć Marsa oraz danych pochodzących ziemskiego radaru badającego powierzchnię Czerwonej Planety, mówi główny autor badań, doktor José Alexis Palermo Rodriguez. Wybrali więc obszar, który wyglądał jak miejsce wielkie powodzi. Jednak okazało się, że jego wygląd nie odpowiada scenariuszowi „zwykłej” powodzi. Kolejne badania i zdjęcia Marsa sugerowały raczej, że doszło tam do tsunami. Teraz Rodriguez i jego zespół znaleźli pozostałość po prawdopodobnym sprawcy tsunami – krater uderzeniowy Pohl o szerokości 110 kilometrów.
      Krater znajduje się na północnych nizinach Marsa. Powstał na osadach, które prawdopodobnie uformowały się, gdy miejsce to zostało po raz pierwszy zalane podczas tworzenia się wielkiego oceanu. Na podstawie rozmiarów krateru i serii symulacji naukowcy doszli do wniosku, że przed 3,4 miliardami lat w Marsa uderzyła asteroida o średnicy około 9 lub 3 kilometrów – wszystko zależy od właściwości podłoża, na które spadła – i wywołała tsunami z falami o wysokości do 250 metrów, które powędrowały 1500 kilometrów od miejsca uderzenia.
      Gdy myślimy o tsunami wyobrażamy sobie ścianę wody zbliżającą się do wybrzeża i je zalewającą. Tutaj mogło przebiegać to inaczej. Mieliśmy ścianę czerwonawej wzburzonej wody poruszającej się w górę i w dół wraz z niesionym skałami i gruntem, mówi Rodriguez. Jako że Mars ma słabszą grawitację niż Ziemia, woda i skały opadały wolniej niż na naszej planecie.
      Uczeni z Planetary Science Institute mówią, że w miejscu lądowania Vikinga 1 zapewne znajdują się bardzo stare osady oceaniczne wyrzucone przez tsunami. Głazy widoczne na pierwszych zdjęciach przysłanych z powierzchni Marsa to prawdopodobnie skały przemieszczone przez megatsunami.
      Zdaniem uczonych uderzenie, które wywołało megatsunami na Marsie było bardzo podobne do upadku asteroidy, która zabiła dinozaury. W obu przypadkach asteroida spadła do płytkich wód (ok. 200 metrów głębokości), oba kratery uderzeniowe mają około 100 km średnicy i obaw wywołały fale o podobnej wysokości, które na podobną odległość zalały ląd.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Szukając śladów roślin z czasów, kiedy ustępował lodowiec, naukowcy z paru uczelni pobierali rdzenie osadów z dna Małego Stawu w Karkonoszach. Zespół pracował na pokładzie pływającej platformy.
      W pewnych miejscach osady mają ok. 10 m grubości. Jak podkreślono we wpisie Karkonoskiego Parku Narodowego (KPN) na Facebooku, można tam znaleźć fragmenty DNA, części roślin i zwierząt, a także np. pyłki czy ślady pożarów.
       

      Kierownikiem projektu „Paleogenomika refugiów środkowoeuropejskich: dynamika flory arktyczno-alpejskiej w czasie i przestrzeni pomiędzy strefą polarną a umiarkowaną” jest dr hab. Michał Ronikier z Instytutu Botaniki im. Władysława Szafera Polskiej Akademii Nauk. Badania finansuje Narodowe Centrum Nauki.
      Cytowany przez TVP3 Marek Dobrowolski, główny specjalista ds. ochrony przyrody z KPN, wyjaśnia, że nowoczesna technologia pozwala sprawdzić kod genetyczny znalezionych roślin, a potem porównać go z występującymi współcześnie w regionie. Dzięki temu można ustalić reakcje roślin: jakie gatunki przetrwały do dziś, jakie ograniczyły częstość występowania, a jakie wyginęły. Uzyskane wyniki pozwolą również wnioskować o przeszłych cyklach klimatycznych i geologicznych.
      Dr Ronikier dodaje, że na podstawie rekonstrukcji można pokusić się o prognozowanie, co zajdzie w przyszłości.
      Podobne badania mają zostać przeprowadzone w Wielkim Stawie, największym polodowcowym jeziorze cyrkowym Karkonoszy o powierzchni 8,321 ha.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od niemal 1,5 roku na powierzchni Marsa pracuje MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), które wytwarza tlen z marsjańskiej atmosfery. Urządzenie, znajdujące się na pokładzie łazika Perseverance, trafiło na Czerwoną Planetę w lutym 2021, a pierwszy tlen wytworzyło 20 kwietnia.
      Naukowcy z MIT i NASA informują, że do końca 2021 roku MOXIE uruchamiano siedmiokrotnie, podczas różnych pór roku, w różnych warunkach atmosferycznych, zarówno w ciągu dnia jak i nocy. Za każdym razem eksperymentalny instrument osiągał swój cel i produkował 6 gramów tlenu na godzinę. To mniej więcej tyle co średniej wielkości drzewo na Ziemi.
      Badacze przewidują, że zanim na Marsie wyląduje pierwszy człowiek, zostanie tam wysłana większa wersja MOXIE, zdolna do produkcji kilkunastu lub kilkudziesięciu kilogramów tlenu na godzinę. Takie urządzenie zapewniałoby nie tylko tlen do oddychania, ale również tlen potrzebny do wyprodukowania paliwa, dzięki któremu astronauci mogliby wrócić na Ziemię. MOXIE to pierwszy krok w kierunku realizacji tych zamierzeń.
      MOXIE to jednocześnie pierwsze urządzenie na Marsie, które wykorzystuje lokalne surowce – w tym przypadku dwutlenek węgla – do produkcji potrzebnych nam zasobów. To pierwsza w historii praktyczna demonstracja wykorzystania zasobów z innej planety i przekształcenia ich w coś, co można wykorzystać podczas misji załogowej, mówi profesor Jeffrey Hoffman z Wydziału Aeronautyki i Astronautyki MIT. Nauczyliśmy się bardzo wielu rzeczy, dzięki którym będziemy mogli przygotować większy system tego typu, dodaje Michael Hecht z Haystack Observatory na MIT, główny badacz misji MOXIE.
      Obecna wersja MOXIE jest niewielka. Urządzenie ma się zmieścić na pokładzie łazika. Ponadto zaprojektowano je z myślą o działaniu przez krótki czas. Prowadzenie eksperymentów z użyciem MOXIE zależy od innych badań prowadzonych przez łazik. Docelowa pełnowymiarowa wersja urządzenia miałaby pracować bez przerwy.
      MOXIE najpierw pobiera gaz z atmosfery Marsa. Przechodzi on przez filtr usuwający zanieczyszczenia. Gaz jest następnie kompresowany i przesyłany do instrumentu SOXE (Solid OXide Electrolyzer), który elektrochemicznie rozbija CO2 na jony tlenu i tlenek węgla. Jony są następnie izolowane i łączone, by uzyskać tlen molekularny O2. Jest ona następnie badany pod kątem ilości i czystości, a później uwalniany wraz z innymi gazami do atmosfery Marsa.
      Po uruchomieniu MOXIE najpierw przez kilka godzin się rozgrzewa, później przez godzinę produkuje tlen, a następnie kończy pracę. Każdy z siedmiu eksperymentów zaplanowano tak, by odbywał się w różnych warunkach. Naukowcy chcieli sprawdzić, czy urządzenie poradzi sobie z takim wyzwaniem. Atmosfera Marsa jest znacznie bardziej zmienna niż atmosfera Ziemi. Jej gęstość w ciągu roku może zmieniać się o 100%, a zmiany temperatury dochodzą do 100 stopni Celsjusza. Jednym z celów naszych eksperymentów było sprawdzenie, czy MOXIE będzie działało o każdej porze roku, wyjaśnia Hoffman. Dotychczas urządzenie produkowało tlen niemal o każdej porze dnia i nocy. Nie sprawdzaliśmy jeszcze, czy może pracować o świcie lub zmierzchu, gdy dochodzi do znacznych zmian temperatury. Ale mamy asa w rękawie. Testowaliśmy MOXIE w laboratorium i sądzę, że będziemy w stanie udowodnić, iż rzeczywiście radzi sobie o każdej porze doby, zapowiada Michael Hecht.
      Na tym jednak ambitne plany się nie kończą. Inżynierowie planują przeprowadzenie testów marsjańską wiosną, gdy gęstość atmosfery i poziom CO2 są najwyższe. Uruchomimy MOXIE przy największej gęstości atmosfery i spróbujemy pozyskać najwięcej tlenu jak to tylko będzie możliwe. Ustawimy najwyższą moc na jaką się odważymy i pozwolimy urządzeniu pracować tak długo, jak będziemy mogli, dodaje menedżer.
      MOXIE jest jednym z wielu eksperymentów na pokładzie Perseverance, nie może więc pracować bez przerwy, energia potrzebna jest też do zasilania innych urządzeń. Dlatego tez instrument jest uruchamiany i zatrzymywany, to zaś prowadzi do dużych zmian temperatury, które z czasem mogą niekorzystnie wpływać na urządzenie. Dlatego też inżynierowie analizują prace MOXIE pod kątem zużycia. To bardzo potrzebne badania. Jeśli bowiem mała wersja MOXIE wytrzyma wielokrotne uruchamianie, ogrzewanie, pracę i schładzanie się, to duża wersja, działająca bez przerwy, powinna być w stanie pracować przez tysiące godzin.
      Na potrzeby misji załogowej będziemy musieli przywieźć na Marsa wiele różnych rzeczy, jak komputery, skafandry czy pomieszczenia mieszkalne. Po co więc brać jeszcze ze sobą tlen, skoro można go wytworzyć na miejscu, mówi Hoffman.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...