Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Anna Tomańska, studentka Wydziału Medycyny Weterynaryjnej Uniwersytetu Przyrodniczego we Wrocławiu (UPWr), bada komunikację pszczół. Chce sprawdzić, jakie dźwięki wydają, gdy są zadowolone, zaniepokojone czy chore. Interesuje się też wykorzystaniem nowoczesnych urządzeń w hodowli tych owadów. Jej wnioski mogą być bardzo przydatne dla pszczelarzy.

Tomańska interesuje się pszczelarstwem od 2 lat. Sporo zawdzięcza w tym zakresie opiekunowi projektu, prof. UPWr, dr. hab. Pawłowi Chorbińskiemu. Pan profesor to autorytet w dziedzinie pszczelarstwa i potrafi skutecznie zarażać swoją pasją – podkreśla studentka.

Już wcześniej interesowałam się bioakustyką. Wspólnie z inżynierem dźwięku i producentem radiowym z Wielkiej Brytanii Philipem Millem napisaliśmy artykuł o nagrywaniu dźwięków przyrody i technologiach. To wtedy, w naszych rozmowach, po raz pierwszy pojawił się temat pszczół. Pomyślałam, że dźwięki z wnętrza ula mogą być nie tylko fascynujące, ale niezwykle ciekawe pod kątem testowania nowoczesnych urządzeń w hodowli tych owadów.

Gdy o pomyśle dowiedział się prof. Chorbiński, namówił Tomańską, by zgłosiła się do programu stypendialnego "Magistrant wdrożeniowy na UPWr".

Studentka wykorzystała drewniane ule wielkopolskie. Wygłuszyła je za pomocą pianki akustycznej, a następnie zainstalowała elektronikę (czujniki ciepła i wilgotności). Ule znajdują się w powstającej właśnie nowoczesnej pasiece w Górach Sowich.

Tomańska przez kilka miesięcy nagrywała dźwięki z ula, a także rejestrowała zmiany temperatury i wilgotności.

Pszczoły nie tylko bzyczą, w ulu słychać też np. ich tupanie oraz komunikację. Ta ostatnia jest fascynująca, dlatego chcemy sprawdzić, czym będzie różnić się, kiedy np. w ulu będzie matka z mniejszą/większą liczbą robotnic, sama matka albo dwie matki. Chcemy wyselekcjonować dźwięki, jakie wydają spokojne pszczoły, od tych, które słychać, gdy są zaniepokojone - tłumaczy studentka. Podobnie z temperaturą: w jakich sytuacjach spada, a kiedy rośnie. Analiza i wnioski z tych badań z pewnością pomogą pszczelarzom. Będą mogli na odległość, za pomocą elektroniki, zapobiegać niebezpiecznym sytuacjom w pasiece - dodaje.

Kilkunastominutowego audioeseju o pszczołach miodnych, który powstał w ramach projektu "Magistrant wdrożeniowy", można wysłuchać dzięki Radiu Warroza.

 

Owocem współpracy Tomańskiej i Milla jest ebook "Bioakustyka". Jak podkreślono w opisie książki, jest to krótki przewodnik, który pomoże Ci postawić pierwsze kroki w nagrywaniu przyrody. W listopadzie zeszłego roku w paśmie gościnnym Radia Kapitał zadebiutowała też ich audycja o Borach Tucholskich.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Przyrodniczego we Wrocławiu (UPWr), którzy pracują na terenie zamku Książ, zidentyfikowali w tamtejszym parku już ponad 40 odmian różaneczników. Szacujemy, że na terenie całego kompleksu parkowo-krajobrazowego liczba odmian może sięgać nawet 70, a tym samym stać się jedną z najcenniejszych nie tylko na Dolnym Śląsku, ale i w Polsce - podkreśla dr Justyna Jaworek-Jakubska.
      Dr Jaworek-Jakubska dodaje, że krzewy azalii i różaneczników pojawiły się tu dzięki księżnej Daisy von Pless. Miało to miejsce na początku ubiegłego wieku. Las zaczęto wtedy przekształcać w park leśny.
      Obrzeża parku leśnego upiększono malowniczymi grupami różaneczników i azalii, podkreślającymi dalekie powiązania widokowe pomiędzy Mauzoleum a zamkiem Książ. Najpiękniejszy widok, ramowany żółtymi azaliami pontyjskimi, rozciągał się z dawnej Drogi Artystycznej - „Kunststrasse” - i został uwieczniony na licznych ilustracjach i pocztówkach z początku XX wieku - opowiada specjalistka.
      W tym roku w Książu zaczęły się prace mające związek ze stopniowym odsłanianiem najwspanialszych widoków z „Kunststrasse”, a także z placu przy Mauzoleum w kierunku zamku.
      Dendrolog i architekt krajobrazu Robert Sobolewski podkreśla, że ponad połowa odmian jest reprezentowana przez pojedyncze krzewy. Wydaje się, że niektóre z nich są tak stare, że nie ma ich już nie tylko w sprzedaży, ale i w uprawie. Dodatkowym problemem są skąpe opisy, które utrudniają weryfikację.
      Oznaczenie/identyfikacja większości odmian różaneczników wspomoże ich ochronę zarówno w Książu, jak i w innych zabytkowych parkach Dolnego Śląska.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uniwersytet Przyrodniczy we Wrocławiu (UPWr) organizuje zbiórkę nasion warzyw do uprawy w przydomowych ogródkach. Jak podkreśla uczelnia, nasiona trafią do starszych osób [z Ukrainy], które mimo trwającej wojny zostały w swoich domach lub nie były w stanie z niego wyjechać.
      Rektor UPWr, prof. Jarosław Bosy, dodaje, że choć, oczywiście, UPWr organizuje też inne zbiórki, ta jest bodaj najbardziej „przyrodnicza”. I pyta retorycznie, kto, jak nie my, ma pomagać w uprawie warzyw?
      Akcja jest koordynowana przez pracowników Katedry Architektury Krajobrazu. Mamy kontakt z pracownikami uniwersytetu w Kijowie i wielu z nich mówiło nam, że na wioskach, gdzie trafia pomoc z Polski, starsze osoby pytają o nasiona warzyw. To dla nich nie tylko szansa na własną żywność w najbliższych miesiącach, ale rodzaj terapii. Zajmą głowę uprawą, podlewaniem... czymś innym niż myślenie o tym, co dzieje się w ich kraju – tłumaczy dr inż. Monika Ziemiańska.
      Nasiona jakich roślin zbierają naukowcy z UPWr? Chodzi o nasiona popularnych warzyw, które nie wymagają specjalnych warunków uprawy, czyli ogórków, buraków, marchwi, kapusty, fasoli, dyni, cukinii, pietruszki, kopru, bobu czy cebuli dymki. Słonecznik jest również mile widziany.
      Nasiona można przekazywać na dwa sposoby: zostawiając w specjalnych pojemnikach na portierni albo wysyłając pocztą na adres UPWr z dopiskiem Biuro Promocji (ul. Norwida 25; 50-375 Wrocław). Zbiórka trwa do 19 maja. Dzień później zebrane nasiona wyruszą w podróż.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii całkowicie sparaliżowany człowiek, cierpiący na zespół zamknięcia, mógł komunikować się całymi zdaniami, używając w tym celu urządzenia rejestrującego aktywność mózgu. Dotychczas interfejsy mózg-komputer pozwalały częściowo sparaliżowanym osobom na kontrolowanie protez lub wybieranie prostych odpowiedzi „tak” lub „nie”. Tym razem mamy do czynienia z zupełnie nowym poziomem możliwości komunikacyjnych.
      W sierpniu 2015 roku u mieszkającego w Niemczech 30-latka zdiagnozowano stwardnienie zanikowe boczne (ALS). Przed końcem roku nie mógł już chodzić i mówić, a od lipca 2016 roku maszyna pomaga mu oddychać. W sierpniu 2016 roku zaczął używać do komunikacji urządzenia śledzącego ruchy gałek ocznych, dzięki czemu mógł wybierać litery na ekranie. Jednak w ciągu roku jego stan pogorszył się do tego stopnia, że nie był w stanie skupić wzroku. Stopniowo zaczął też tracić w ogóle zdolność do poruszania oczami. Gdy jeszcze ją posiadał, wyraził zgodę na zaimplementowanie w mózgu dwóch niewielkich matryc elektrod, z których każda ma 1,5 milimetra długości. Elektrody wszczepiono w marcu 2019 roku w korze mózgowej. Było to możliwe dzięki współpracy z Nielsem Birbaumerem z Uniwersytetu w Tybindze i Ujwalem Chaudharym z ALS Voice gGmbH, niedochodowej organizacji, która pomaga osobom nie będącym w stanie się komunikować.
      Po wszczepieniu elektrod mężczyznę proszono, by wyobrażał sobie wykonywanie fizycznych ruchów. Taka metoda działa w wielu przypadkach kontrolowania protez i egzoszkieletów za pomocą myśli. Jednak prowadzone przez 12 tygodni próby spaliły na panewce. Specjaliści postanowili więc spróbować techniki neurotreningu.
      Neurotrening polega na prezentowaniu pacjentowi jego własnej aktywności mózgu w czasie rzeczywistym. W tym przypadku, gdy elektrody rejestrowały zwiększoną aktywność, komputer odgrywał dźwięk o rosnącej wysokości. Gdy aktywność spadała, zmniejszała się też częstotliwość dźwięku. W ciągu dwóch dni nauczył się samodzielnie zwiększać i zmniejszać częstotliwość odtwarzanego dźwięku. To było niesamowite, mówi Chaudhary. W końcu mężczyzna nauczył się kontrolować aktywność mózgu tak, że za pomocą rosnącego dźwięku komunikował wyraz „tak”, a za pomocą zmniejszającej się częstotliwości – „nie”.
      Po tym sukcesie specjaliści poszli o krok dalej. Wykorzystali pomysł, na który wpadła rodzina pacjenta po tym, gdy nie mógł skupić wzroku. Pokazywali mu wówczas na kartkach różnego koloru grupy liter, z których należało wybierać poszczególne litery, a z nich składano zdanie. Zastosowana obecnie metoda polegała na tym, że mężczyzna słyszał nazwę koloru, wiedział jakie litery są spisane na tle o takim kolorze i albo potwierdzał, albo zaprzeczał, że chce skorzystać z tego właśnie zestawu. W ten sposób zaczął komunikować się pełnymi zdaniami, a jedno z pierwszych zdań, jakie ułożył brzmiało: Chłopaki, to jest bardzo proste.
      Komunikacja jest powolna. Wybranie jednej litery trwa około minutę. Jednak jakość życia mężczyzny uległa dzięki temu znaczącej poprawie. Jest w stanie poprosić o konkretne posiłki, pomasowanie stóp, chciał obejrzeć film z synem. Chaudhary, który regularnie odwiedza mężczyznę, mówi, że często ostatnią rzeczą, o którą prosi chory, jest piwo.
      Naukowiec mówi, że przydatne byłoby stworzenie listy najczęściej używanych słów, by komputer mógł uzupełniać zdania. Istnieje wiele sposobów, by przyspieszyć komunikację, stwierdza.
      Obecnie nie wiadomo, jak długo elektrody mogą pozostawać w mózgu mężczyzny. Znamy jednak przypadki osób, u których działają one już przez 5 lat. specjaliści zauważają, że dla pacjenta z syndromem zamknięcia każdy dzień, w którym może się komunikować z otoczeniem, jest niezwykle ważny. Sądzą też, że tego typu technologie mogą być standardowo stosowane w ciągu najbliższych 10–15 lat. Dla kogoś, kto absolutnie nie ma możliwości komunikacji z otoczeniem, możliwość nawet prostego stwierdzenia „tak” lub „nie” może zmienić życie, mówi Kianoush Nazaropur z Uniwersytetu w Edynburgu.
      Otwartym pozostaje jednak pytanie, jak wiele osób z ALS będzie mogło skorzystać z takich technologii. W około 95% przypadków tej choroby dochodzi też do degeneracji kory ruchowej. U niemieckiego pacjenta czasem pojawiają się problemy komunikacyjne. Bywają nawet miesięczne okresy, że komunikuje się wyłącznie za pomocą „tak” lub „nie". Nie wiadomo, dlaczego tak się dzieje. Przyczyn może być wiele. Być może organizm rozpoznał w elektrodach ciało obce i próbuje je zwalczać zakłócając komunikację. To mogą być powody psychologiczne, technologiczne, problemy z elektrodami, mówi Birbaumer.
      Wyniki eksperymentu opisano na łamach Nature Communications.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr Kinga Adamenko z Uniwersytetu Przyrodniczego we Wrocławiu (UPWr) wykorzystała owoce derenia do produkcji octu, miodów pitnych, cydru i piwa. W napojach przygotowanych z wykorzystaniem nowych technologii zachowane zostały wysokie zawartości i aktywność związków wykazujących działanie prozdrowotne. Innowacyjne produkty fermentowane mają wysoki potencjał antyoksydacyjny.
      Odnosząc się do wyboru tematu rozprawy doktorskiej, Adamenko podkreśla, że w pracy badawczej od początku chciała zajmować się procesami fermentacyjnymi, głównie właśnie pod kątem projektowania nowych napojów fermentowanych.
      Zaczęło się od octów
      Adamenko nawiązała współpracę z dr hab. inż. Alicją Kucharską, która zajmuje się badaniami nad owocami derenia jadalnego. Pierwsze badania ówczesna doktorantka prowadziła nad octami dereniowymi. Było to prawdziwe novum, ponieważ wcześniej nikt nie opisał technologii ich produkcji. Brakowało też prac o właściwościach takich octów.
      Zadowalające wyniki stanowiły punkt wyjścia do dalszych badań. Po raz pierwszy wykorzystałam owoce derenia do produkcji miodów pitnych, napojów niskoalkoholowych na bazie jabłek typu cydr oraz w produkcji piw, również bezalkoholowych.
      Nowatorskie metody w technologii fermentacji
      Adamenko opracowała nowe technologie produkcji napojów fermentowanych z dodatkiem soku z derenia. Zidentyfikowała w nich po raz pierwszy i opisała bioaktywne związki z grupy irydoidów. Potwierdziła także występowanie innych grup związków biologicznie aktywnych: antocyjanów, kwasów fenolowych czy flawonoli. Dodatkowo wzbogaciłam zaprojektowane napoje w cztery związki irydoidowe: kwas loganowy, swerozyd, loganinę oraz kornuzyd. Dominującym irydoidem był kwas loganowy, który ma udowodnione działanie prozdrowotne, w tym przeciwzapalne, antybiotyczne, hipotensyjne czy też antykancerogenne - wyjaśnia dr Adamenko.
      Nowe technologie miały umożliwiać zachowanie wysokiej zawartości i aktywności związków biologicznie aktywnych, dlatego Adamenko analizowała wpływ różnych zabiegów. [...] Dokładnie zbadała wpływ przygotowania brzeczki fermentacyjnej, materiału biologicznego, fermentacji burzliwej oraz cichej, procesu leżakowania, jak również zmiennych parametrów produkcyjnych. Koniec końców udało się jej uzyskać innowacyjne i wartościowe produkty fermentowane.
      Świeże spojrzenie na piwa kwaśne i bezalkoholowe
      W piwach kwaśnych specjalistki z UPWr czynnikiem naturalnie zakwaszającym jest sok z derenia (wykorzystano jego specyficzne właściwości fizykochemiczne i sensoryczne). To ciekawa alternatywa dla klasycznej technologii produkcji, w ramach której wykorzystywane są drobnoustroje z grupy bakterii kwasu mlekowego.
      Drugi aspekt aplikacyjny dotyczył opisanej po raz pierwszy na świecie technologii produkcji owocowych piw bezalkoholowych metodą biologiczną z wykorzystaniem szczepu drożdży Saccharomycodes ludwigii WSL17.
      Nagroda za wyróżniającą się pracę doktorską
      Warto dodać, że Adamenko została laureatką nagrody Prezesa Rady Ministrów za osiągnięcia w zakresie działalności naukowej w roku 2020. Nagrodzono ją w kategorii „Wyróżniająca się rozprawa doktorska”.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy udało się zrekonstruować w laboratorium falową naturę elektronu, jego funkcję falową Blocha. Dokonali tego naukowcy z Uniwersytetu Kalifornijskiego w Santa Barbara (UCSB), a ich praca może znaleźć zastosowanie w projektowaniu kolejnych generacji urządzeń elektronicznych i optoelektronicznych.
      Elektrony zachowują się jednocześnie jak cząstki oraz jak fala. Ich falowa natura opisywane jest przez naukowców za pomocą obiektów matematycznych zwanych funkcjami falowymi. Funkcje te zawierają zarówno składowe rzeczywiste, jak i urojone. Z tego też powodu funkcji falowej Blocha elektronu nie można bezpośrednio zmierzyć. Można jednak obserwować powiązane z nią właściwości. Fizycy od dawna próbują zrozumieć, w jaki sposób falowa natura elektronów poruszających się przez sieć krystaliczną atomów, nadaje tej sieci właściwości elektroniczne i optyczne. Zrozumienie tego zjawiska pozwoli nam projektowanie urządzeń lepiej wykorzystujących falową naturę elektronu.
      Naukowcy z Santa Barbara wykorzystali silny laser na swobodnych elektronach, który posłuży im do uzyskanie oscylującego pola elektrycznego w półprzewodniku, arsenu galu. Jednocześnie za pomocą lasera podczerwonego o niskiej częstotliwości wzbudzali jego elektrony. Wzbudzone elektrony pozostawiały po sobie „dziury” o ładunku dodatnim. Jak wyjaśnia Mark Sherwin, w arsenku galu dziury te występują w dwóch odmianach – lekkiej i ciężkiej – i zachowują się jak cząstki o różnych masach.
      Para elektron-dziura tworzy kwazicząstkę zwaną ekscytonem. Fizycy z UCSB odkryli, że jeśli utworzy się elektrony i dziury w odpowiednim momencie oscylacji pola elektrycznego, to oba elementy składowe ekscytonów najpierw oddalają się od siebie, następnie zwalniają, zatrzymują się, zaczynają przyspieszać w swoim kierunku, dochodzi do ich zderzenia i rekombinacji. W czasie rekombinacji emitują impuls światła – zwany wstęgą boczną – o charakterystycznej energii. Emisja ta zawiera informacje o funkcji falowej elektronów, w tym o ich fazach.
      Jako, że światło i ciężkie dziury przyspieszają w różnym tempie w polu elektrycznym ich funkcje falowe Blocha mają różne fazy przed rekombinacją z elektronami. Dzięki tej różnicy fazy dochodzi do interferencji ich funkcji falowych i emisji, którą można mierzyć. Interferencja ta determinuje też polaryzację wstęgi bocznej. Może ona być kołowa lub eliptyczna.
      Autorzy eksperymentu zapewniają, że sam prosty stosunek pomiędzy interferencją a polaryzacją, który można zmierzyć, jest wystarczającym warunkiem łączącym teorię mechaniki kwantowej ze zjawiskami zachodzącymi w rzeczywistości. Ten jeden parametr w pełni opisuje funkcję falową Blocha dziury uzyskanej w arsenku galu. Uzyskujemy tę wartość mierząc polaryzację wstęgi bocznej, a następnie rekonstruując funkcję falową, która może się różnić w zależności od kąta propagacji dziury w krysztale, dodaje Seamus O'Hara.
      Do czego takie badania mogą się przydać? Dotychczas naukowcy musieli polegać na teoriach zawierających wiele słabo poznanych elementów. Skoro teraz możemy dokładnie zrekonstruować funkcję falową Blocha dla różnych materiałów, możemy to wykorzystać przy projektowaniu i budowie laserów, czujników i niektórych elementów komputerów kwantowych, wyjaśniają naukowcy.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...