Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak kolczuga Bilba i peleryna Batmana – miękki i elastyczny materiał staje się twardy i sztywny

Recommended Posts

Inżynierowie z California Institute of Technology (Caltech) i Jet Propulsion Laboratory (JPL) stworzyli inspirowany kolczugami materiał, który pod wpływem przyłożonego napięcia zmienia się z miękkiego i giętkiego w sztywny. Materiał taki może przydać się do tworzenia egzoszkieletów czy rusztowań zmieniających swoją sztywność w miarę gojenia się ran. Być może posłuży też do budowy... mostów, które można będzie przywieźć na miejsce w rolce, rozwinąć i usztywnić.

Chcieliśmy stworzyć materiał, który zmienia sztywność na żądanie, mówi profesor Chiara Daraio. Naszym celem było uzyskanie tkaniny, która z miękkiej w kontrolowany sposób staje się sztywna, dodaje. Takie materiały spotykaliśmy dotychczas w literaturze. Dość przypomnieć tutaj kolczugę z mithrilu, którą Frodo otrzymał od Bilba czy pelerynę Batmana z filmu Batman Begins.

W życiu codziennym dość często spotykamy się z materiałami, których sztywność została zmieniona. Wystarczy przypomnieć sobie np. paczkę próżniowo zapakowanej kawy. Jest sztywna i twarda, jednak natychmiast po przebiciu opakowania całość staje się miękka. Takie struktury jak kawa czy piasek mają złożone kształty, nie są ze sobą połączone i mogą usztywniać się tylko pod wpływem kompresji. Z kolei kolczuga, złożona z połączonych metalowych pierścieni może stawać się sztywna zarówno gdy ją ściśniemy, jak i gdy ją rozciągniemy. I to właśnie ta jej właściwość zainspirowała naukowców. Przetestowaliśmy wiele różnych cząstek, by sprawdzić, które są zarówno elastycznej, jak i można nadać im sztywność. Okazało się, że te, które zyskują sztywność tylko podczas jednego z rodzajów przyłożonej siły (ściskania lub rozciągania) nie sprawują się najlepiej, mówi profesor Daraio.

Uczeni sprawdzili więc całą gamę kształtów, od połączonych pierścieni, poprzez połączone sześciany po połączone ośmiościany foremne, które przypominają dwie piramidy złączone podstawami. W modelowaniu interakcji tego typu struktur brał udział profesor Jose E. Andrade, specjalista od modelowania zachowania materiałów ziarnistych.

Materiały ziarniste to piękny przykład złożonego systemu, w którym proste interakcje na poziomie poszczególnych ziaren mogą przekładać się na złożone zmiany strukturalne całości, mówi Andrade. Naukowcy prowadzili symulacje komputerowe oraz wytwarzali za pomocą drukarek 3D obiecujące struktury i testowali je w laboratorium.

Podczas testów materiały albo ściskano w komorach próżniowych albo zrzucano na nie ciężary. W jednym przypadku taka „kolczuga” utrzymała masę 50-krotnie większą od własnej masy. Testy wykazały, że strukturami o największych zmianach właściwości mechanicznych pomiędzy stanem elastycznym a sztywnym, były struktury o największej średniej liczbie punktów stycznych pomiędzy tworzącymi je elementami.

Tego typu tkaniny mają największy potencjał. Mogą być lekkie, miękkie i wygodne w użyciu, a pod wpływem przyłożonej siły stają się sztywną strukturą, która może wspierać i chronić właściciela, wyjaśnia Yifan Wang, jeden z autorów badań.

Jak już wspomnieliśmy, taki materiał może posłużyć również do budowy mostów. Jak więc spowodować, by coś, co zostało przywiezione w rolce utrzymało ludzi czy pojazdy? Profesor Daraio mówi, że przez taki materiał można np. przeciągnąć liny, za pomocą których materiał zostanie ściśnięty i usztywniony. Te liny będą działały tak, jak troczki, za pomocą których ściągamy np. kaptur, wyjaśnia.


« powrót do artykułu

Share this post


Link to post
Share on other sites

I znowu to samo. Angielskie cable to nie Polski kabel tylko lina nośna. Polski kabel to służy do przesyłania prądu .

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Tak mi coś nie pasował ten prąd elektryczny i liny. Sprawdziłem w artukule źródłowym i jest tam wyjaśnione, że ten prąd podgrzewa spirale grzejne, które pod wpływem ciepła się kurczą i ściskają do siebie, stąd blokowanie materiału.

Do tego gify obrazują trochę działanie:

Gif01---soft.max-500x500.gif

Gif01---stiff.max-500x500.gif

 

Share this post


Link to post
Share on other sites

Działanie przedstawionego materiału nie ma nic wspólnego ani z prądem elektrycznym ani z kablami, ani z linami nośnymi, a wspominanie podgrzewanie spiral grzejnych dotyczy zupełnie innej pracy.

"Kolczuga" jest po prostu w plastikowym woreczku. Po odessaniu powierza całość nabiera sztywności. Podobne zjawisko można zaobserwować w próżniowych workach do przechowywania ubrań...

Share this post


Link to post
Share on other sites
12 godzin temu, orzan napisał:

I znowu to samo. Angielskie cable to nie Polski kabel tylko lina nośna. Polski kabel to służy do przesyłania prądu .

NIEPRAWDA!

Elektrycy jakby zawładnęli "kablem" (kabel elektryczny), ale w polskiej terminologii technicznej budowlańcy mają też do "kabla" (kabel sprężający) prawo, jako do cięgna wstępnie napiętego umieszczonego w konstrukcji: np. kablobeton.

 

12 godzin temu, Mariusz Błoński napisał:

Słusznie :) Poprawiam :)

Niesłusznie:D Można poprawić ponownie:P

ponieważ w tym przypadku, aby pomysł zadziałał musi nastąpić wstępne naprężenie cięgna, a to już nie lina, która przenosi dopiero siłę użytkową, a więc post factum.

1 godzinę temu, Artur M napisał:

Działanie przedstawionego materiału nie ma nic wspólnego ani z prądem elektrycznym ani z kablami, ani z linami nośnymi, a wspominanie podgrzewanie spiral grzejnych dotyczy zupełnie innej pracy.

Koncepcja dotyczy mechanizmu a la kolczuga, który aby zadziałał musi być wstępnie naprężony. Pomysłodawcy dają żródłu siły wolną rękę, która może być podciśnieniem, prądem,  itp.

Edited by 3grosze
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Mam chyba deja vu. Identyczna dyskusja wywiązała się pod jednym z artykułów o radioteleskopie w Arecibo w zeszłym roku. Lekkomyślna szarża elektryka (tego samego) została wtedy odparta przez budowlańców okopanych na placu budowy boju :) Parafrazując, znowu to samo.

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites

Byłyby akuratne w przypadku mostu wantowego lub wiszącego (coś wisi). Tutaj  jest most wspornikowy, gdzie przęsło z tej kolczugi oparte jest na filarach (nic nie wisi), a cięgna (wasze "liny") płyty przęsła muszą być wstępnie naprężone... co czyni je kablami sprężającymi. 

Edited by 3grosze
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Opracowanie większości rzeczy które znamy, często trwało nawet kilkadziesiąt lat. Tyle że mało kto interesował się tematem w fazie badań. 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Woda to niezwykły płyn. Niezbędny i najbardziej powszechny, a jednocześnie najmniej ją rozumiemy. Ma wiele niezwykłych właściwości, których wciąż nie potrafimy wyjaśnić. Na przykład większość płynów staje się coraz gęstszych w czasie schładzania. Tymczasem woda jest najgęstsza w temperaturze około 4 stopni Celsjusza. Ta jej właściwość powoduje, że lód unosi się na powierzchni, dzięki czemu może istnieć życie. Gdyby bowiem tonął, organizmy w oceanach nie przetrwałyby zimy.
      Woda ma też niezwykle duże napięcie powierzchniowe, dzięki czemu owady mogą po niej chodzi oraz olbrzymią zdolność przechowywania ciepła, co stabilizuje temperaturę oceanu.
      Teraz naukowcy ze SLAC National Accelerator Laboratory, Uniwersytet Stanforda i Uniwersytetu w Sztokholmie przeprowadzili pierwsze bezpośredni obserwacje, które pokazały, jak wzbudzone laserem atomy wodoru w molekułach wody ciągną i pchają sąsiednie molekuły wody. Badania, których wyniki opublikowano na łamach Nature, opisują zjawiska, które mogą leżeć u podstaw niezwykłych właściwości wody. Ich zbadania może pomóc nam w zrozumieniu, w jaki sposób woda pomaga białkom spełniać ich rolę w organizmach żywych.
      Jeden z członków zespołu badawczego, profesor Anders Nilsson z Uniwersytetu w Sztokholmie przypomina, że już od pewnego czasu przypuszczano, iż za wiele właściwości wody mogą odpowiadać te tzw. jądrowe efekty kwantowe. Nasz eksperyment to pierwsze obserwacje tych efektów. Pytanie brzmi, czy rzeczywiście są one zaginionym ogniwem teoretycznych modeli opisujących niezwykłe właściwości wody, mówi uczony.
      W każdej molekule wody znajdziemy jeden atom tlenu i dwa atomy wodoru. Istnieje też cała sieć wiązań wodorowych pomiędzy dodatnio naładowanymi atomami wodoru w jednej molekule i ujemnie naładowanymi atomami tlenu w sąsiednich molekułach. Ta siec utrzymuje całość razem. Dopiero jednak teraz udało się zaobserwować, jak molekuły wody – za pośrednictwem tej sieci – wchodzą w interakcje.
      To pierwsze badania, w których bezpośrednio wykazano, że reakcja sieci wiązań wodorowych na impuls energii w postaci światła lasera zależy od rozkładu atomów wodoru w przestrzeni, który jest z kolei determinowany zasadami mechaniki kwantowej. Od dawna uważano, że to właśnie ona nadaje niezwykłe właściwości wodzie i jej sieci wiązań wodorowych, stwierdza Kelly Gaffney ze SLAC.
      Obserwacje tego typu zjawisk są niezwykle trudne, gdyż ruchy wiązań atomowych są bardzo szybkie i odbywają się w bardzo małej skali. Amerykańsko-szwedzki zespół naukowy poradził sobie z tym problemem dzięki MeV-UED, superszybkiej „kamerze elektronowej“ ze SLAC, która wykrywa niewielki ruchy molekuł rozpraszając na nich strumień elektronów.
      Naukowcy najpierw wygenerowali strumienie wody o średnicy zaledwie 100 nanometrów. To około 1000-krotnie mniej niż średnica włosa. Następnie za pomocą podczerwonego lasera wprawili w drgania molekuły wody tworzące te strumienie. Wtedy do dzieła przystąpił MeV-UED, ostrzeliwując wodę krótkimi wysokoenergetycznymi impulsami elektronów. W ten sposób uzyskano obraz o wysokiej rozdzielczości, który wyglądał jak poklatkowy film, szczegółowo pokazujący, jak molekuły reagują na światło.
      Obraz skupiał się na grupach, na które składały się po trzy molekuły. Dzięki temu naukowcy mogli zaobserwować, jak najpierw atomy wodoru przyciągają do siebie atomy tlenu z sąsiednich molekuł, by za chwilę – dzięki energii uzyskanej z lasera – mocno je odepchnąć, zwiększając odległości pomiędzy molekułami.
      To naprawdę otwiera nowe możliwości w dziedzinie badań nad wodą. W końcu możemy zobaczyć poruszające się wiązania wodorowe. Chcielibyśmy teraz powiązać te ruchy z szerszym obrazem, który może rzucić światło na to, w jaki sposób woda przyczyniła się do powstania i przetrwania życia na ziemi. Możemy też dzięki temu udoskonalić metody pozyskiwania energii odnawialnej, stwierdził Xijie Wang ze SLAC.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Lawrence Berkeley National Laboratory (LBNL) udało się dokonać pierwszych pomiarów długości wiązania atomowego einsteinu. To jedna z podstawowych cech interakcji pierwiastka z innymi atomami i molekułami. Mimo, że einstein został odkryty przed 70 laty, to wciąż niewiele o nim wiadomo. Pierwiastek jest bowiem bardzo trudny do uzyskania i wysoce radioaktywny.
      Einstein został odkryty w 1952 roku przez Alberta Ghiorso w pozostałościach po wybuchu bomby termojądrowej. W czasie eksplozji jądro 238U wychwytuje 15 neutronów i powstaje 253U, który po emisji 7 elektronów zmienia się w 253Es.
      Zespół naukowy pracujący pod kierunkiem profesor Rebeki Abergel z LBNL i Stosha Kozimora z Los Alamos National Laboratory, miał do dyspozycji mniej niż 250 nanogramów pierwiastka. Niezbyt wiele wiadomo o einsteinie. To spore osiągnięcie, że udąło się nam przeprowadzić badania z zakresu chemii nieorganicznej. To ważne, gdyż teraz lepiej rozumiemy zachowanie tego pierwiastka, co pozwoli nam wykorzystać tę wiedzę do opracowania nowych materiałów i nowych technologii. Niekoniecznie zresztą z udziałem einsteinu, ale również z użyciem innych aktynowców. Lepiej poznamy też tablicę okresową pierwiastków, mówi Abergel.
      Badania prowadzono w nowoczesnych jednostkach naukowych: Molecular Foundry w Berkeley Lab i Stanford Synchrotron Radiation Lightsource w SLAC National Accelerator Laboratory. Wykorzystano przy tym spektroskopię luminescencyjną i absorpcję rentgenowską.
      Jednak zanim przeprowadzono badania trzeba było pozyskać sam einstein. To nie było łatwe. Pierwiastek został wytworzony w High Flux Isotope Reactor w Oak Ridge National Laboratory. To jedno z niewielu miejsc na świecie, gdzie można produkować einstein. Wytwarza się go bombardując kiur neutronami. Wywołuje to cały łańcuch reakcji chemicznych. I tutaj pojawił się pierwszy problem. Próbka była mocno zanieczyszona kalifornium. Uzyskanie odpowiedniej ilości czystego einsteinu jest bowiem niezwykle trudne.
      Zespół naukowy musiał więc zrezygnować z pierwotnego planu wykorzystania krystalografii rentgenowskiej, czyli techniki uznawanej za złoty standard przy badaniu struktury wysoce radioaktywnych próbek. Technika to wymaga bowiem otrzymania czystej metalicznej próbki. Konieczne stało się więc opracowanie nowej techniki badawczej, pozwalającej na określenie struktury einsteinu w zanieczyszczonej próbce. Z pomocą przyszli naukowcy z Los Alamos, który opracowali odpowiedni instrument utrzymujący próbkę.
      Później trzeba było poradzić sobie z rozpadem einsteinu. Uczeni wykorzystywali 254, jeden z bardziej stabilnych izotopów, o czasie półrozpadu wynoszącym 276 dni. Zdążyli wykonać tylko część zaplanowanych eksperymentów, gdy doszło do wybuchu pandemii i laboratorium zostało zamknięte. Gdy naukowcy mogli do niego wrócić, większość pierwiastka zdążyła już ulec rozpadowi.
      Mimo to udało się zmierzyć długość wiązań atomowych oraz określić pewne właściwości einsteinu, które okazały się odmienne od reszty aktynowców. Określenie długości wiązań może nie brzmi zbyt interesująco, ale to pierwsza rzecz, którą chcą wiedzieć naukowcy, badający jak metale łączą się z innymi molekułami. Jaki rodzaj interakcji chemicznych się pojawia, gdy badany atom wiąże się z innymi, mówi Abergel.
      Gdy już wiemy, jak będą układały się atomy w molekule zawierającej einstein, możemy poszukiwać interesujących nas właściwości chemicznych takich molekuł. Pozwala to też określać trendy w tablicy okresowej pierwiastków. Mając do dyspozycji takie dane lepiej rozumiemy jak zachowują się wszystkie aktynowce. A mamy wśród nich pierwiastki i ich izotopy, które są przydatne w medycynie jądrowej czy w produkcji energii, wyjaśnia profesor Abergel.
      Odkrycie pozwoli też zrozumieć to, co znajduje się poza obecną tablicą okresową i może ułatwić odkrycie nowych pierwiastków. Teraz naprawdę lepiej zaczynamy rozumieć, co dzieje się w miarę zbliżania się do końca tablicy okresowej. Możemy też zaplanować eksperymenty z użyciem einsteinu, które pozwolą nam na odkrycie kolejnych pierwiastków. Na przykład pierwiastki, które poznaliśmy w ciągu ostatnich 10 lat, jak np. tenes, były odkrywane dzięki użyciu berkelu. Jeśli będziemy w stanie uzyskać wystarczająco dużo czystego einsteinu, możemy wykorzystać ten pierwiastek jako cel w eksperymentach, w czasie których wytwarza się nowe pierwiastki. W ten sposób zbliżmy się do – teoretycznie wyliczonej – wyspy stabilności.
      Ta poszukiwana wyspa stabilności to teoretycznie wyliczony obszar tablicy okresowej, gdzie superciężkie pierwiastki mogą istnieć przez minuty, a może nawet dni, w przeciwieństwie do obecnie znanych superciężkich pierwiastków istniejących, których czas półrozpadu liczony jest w mikrosekundach.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Analizując reakcje komórek nabłonka gruczołu mlekowego na zmieniającą się sztywność hydrożelu, bioinżynierowie z Uniwersytetu Kalifornijskiego w San Diego odkryli, że kilka szlaków współdziała ze sobą, sprzyjając przekształceniu komórek piersi w komórki rakowe.
      Wyniki opublikowane na łamach Proceedings of the National Academy of Sciences (PNAS) mogą stanowić inspirację dla nowych metod leczenia pacjentek i hamowania wzrostu guzów.
      Dynamicznie modulując sztywność mikrośrodowiska, możemy lepiej odtwarzać w laboratorium procesy zachodzące podczas transformacji komórek sutka w komórki złośliwe - podkreśla prof. Adam Engler.
      Od jakiegoś czasu wiadomo, że w rozwoju i rozprzestrzenianiu nowotworu ważną rolę odgrywają nie tylko sygnały genetyczne i biochemiczne, ale i siły mechaniczne. W przeszłości wykazano, że modelowanie sztywnego środowiska in vitro sprzyja wzrostowi guzów. Często jednak modele te nie odtwarzają w pełni tego, co się dzieje w ciele, bo są statyczne. Sztywnienie tkanek jest zaś procesem dynamicznym [...].
      Zespół Englera stworzył więc system, w którym sztywność może być dynamicznie dostrajana. Później trzeba patrzeć, jak komórki reagują na zmiany sztywności.
      Próbujemy odtworzyć proces włóknienia podczas postępującego rozwoju guza - tłumaczy dr Jesse Placone.
      Podczas testów zastosowano hydrożel (materiał na bazie kwasu hialuronowego), który można było w różnym stopniu utwardzać za pomocą wolnych rodników i ultrafioletu. Na początku hydrożel utwardzono w takim stopniu, by oddawał sztywność zdrowej tkanki. Później w żelu hodowano komórki nabłonka gruczołu mlekowego (ang. mammary epithelial cells, MEC). Gdy komórki dojrzały, sztywność zwiększano do poziomu występującego w raku sutka. Jak podkreślają Amerykanie, dawka UV, jaka była do tego konieczna, nie uszkadzała komórek.
      Okazało się, że sztywnienie aktywowało kilka szlaków, które łącznie sygnalizowały MEC, by stały się komórkami rakowymi. Kluczowymi "graczami" były białka: TWIST1, TGF-beta, SMAD i YAP.
      Zauważyliśmy, że w dynamicznym środowisku te różne szlaki współdziałają. Nie wystarczy zahamowanie jednego z nich, jak wcześniej wykazano w badaniach polegających na modelowaniu statycznych sztywnych środowisk. Z klinicznego punktu widzenia sugeruje to, że terapia monolekowa może się nie sprawdzić u wszystkich chorych z rakiem piersi.
      Naukowcy odkryli też, że subpopulacja komórek gruczołu mlekowego nie reaguje na sztywnienie. Wg Englera, to dobra wiadomość, gdyż w wyniku samych oddziaływań środowiska przemianę nowotworową przejdzie mniej komórek niż dotąd sądzono. Jeśli efekt ten występuje także u chorych, może to oznaczać mniejszą liczbę albo mniejsze gabaryty guzów pierwotnych.
      W niedalekiej przyszłości zespół chce poszukać substancji, które mogłyby hamować zidentyfikowane szlaki i sprawdzić, jak wpływają one na rozwój guza.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Do czego przydaje się skórka sera pleśniowego, poza dostarczaniem niezapomnianych wrażeń smakowych oraz utrzymywaniem gomułki w całości i poza zasięgiem niepożądanych mikroorganizmów? Okazuje się, że może być inspiracją dla projektantów nowych materiałów, w tym przypadku podlegającego samooczyszczaniu (Proceedings of the National Academy of Sciences).
      Zespół pracujący pod kierownictwem Wendelina Starka z Politechniki Federalnej w Zurychu postanowił stworzyć materiał naśladujący skórkę sera camembert. W tym celu zbudowano coś na kształt biokanapki. Najpierw Szwajcarzy uzyskali dwuwymiarową warstwę polimeru, którą zaszczepili grzybami Penicillium roqueforti (stosuje się je jako kultury starterowe przy produkcji miękkich serów z przerostami niebieskiej pleśni). Później całość zamknięto w dwóch warstwach porowatego plastiku, który utrzymywał grzyby w środku, ale był jednocześnie przepuszczalny dla cieczy, w tym wypadku składników odżywczych, i gazów. Podczas testów materiał skrapiano roztworem cukru. W ciągu 2 tygodni grzyby całkowicie zjadały cukier, a po zmetabolizowaniu go przechodziły w stan spoczynku. By poza okresami obfitości pożywienia, które można inaczej opisać jako czas realizacji funkcji oczyszczających, P. roqueforti utrzymały się przy życiu, należy utrzymywać odpowiednią wilgotność otoczenia.
      Szwajcarzy snują wielkie plany na przyszłość. Zastanawiają się nad zastosowaniem pokryć "biokanapkowych" w ścianach drapaczy chmur. Zastępując grzyby P. roqueforti glonami, można by przetwarzać dwutlenek węgla na tlen. Poza tym warto by pomyśleć o opakowaniach zapobiegających skażeniu i zepsuciu żywności/napojów czy nowych powierzchniach antybakteryjnych.
    • By KopalniaWiedzy.pl
      Uczeni z University of Illinois, zainspirowani naturą, wyposażyli  kompozyt w „system krwionośny" uzyskując w ten sposób wielofunkcyjny materiał, potencjalnie zdolny do samonaprawiania się, samochłodzenia, wykazujący cechy metamateriału i mający wiele innych zalet.
      Umieszczając w kompozycie płyn, możemy w prosty sposób uzyskać materiał o wielu różnych właściwościach. Stworzyliśmy materiały z ‚układem krążenia', które mogą niemal wszystko - mówi profesor inżynierii kosmicznej Scott White, który stał na czele grupy badawczej.
      Kompozyty to struktury zbudowane z co najmniej dwóch materiałów, które charakteryzują się właściwościami obu części składowych. Zespół z Illinois opracował kompozyt wzmacniany włóknami, w którym zastosowano mikrokanaliki wypełniane płynami lub gazami.
      Profesor Jeffrey Moore, specjalizujący się w chemii, inżynierii i materiałoznawstwie, zauważa: Drzewa to niezwykłe materiały i jednocześnie dynamiczne struktury. Mogą pompować płyny, przenosić energię i masę z korzeni do liści. Nasze badania to pierwszy krok w stworzeniu podobnie działających materiałów syntetycznych.
      Kluczem do wykonania nowego materiału było odpowiednie zmodyfikowanie komercyjnie dostępnych włókien używanych do wzmacniania kompozytów. Zespół z Illinois zmienił je tak, że rozpadały się pod wpływem wysokiej temperatury. Wówczas po podgrzaniu kompozytu włókna odparowywały, pozostawiając mikrokanaliki.
      Uczeni zademonstrowali następnie cztery różne klasy materiałów utworzonych tą metodą. Pokazali kompozyty przydatne do regulowania temperatury, które uzyskali wstrzykując w mikrokanaliki gorące lub zimne ciecze. Wypełnienie ‚systemu krwionośnego' środkami chemicznymi pozwalało na przeprowadzanie różnych reakcji, dzięki czemu doprowadzono np. do pojawienia się luminescencji w kompozycie. Z kolei wtłaczając w mikrokanaliki płyt przewodzący prąd lub też ferrofluid mogli manipulować właściwościami elektrycznymi i magnetycznymi materiału, co może okazać się przydatne np. przy produkcji pojazdów niewykrywalnych dla radarów.
      To nie jest po prostu kolejne urządzenie z mikrokanalikami. To nie system na chipie. To nowy materiał strukturalny, zdolny do naśladowania systemów biologicznych. To wielki krok naprzód - powiedziała profesor inżynierii materiałowej i kosmicznej Nancy Sottos.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...